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CHAPTER I 

Introduction 

Since the work by Nelson and Plosser (1982), it has been generally accepted that 

most economic time series axe integrated of order one. Nonstationarity is tested by 

conventional unit root test such as the ADF and Za tests. Existing tests, with some 

exceptions, are tests that use the unit root as the null hypothesis and stationarity as 

an alternative. One serious drawback of these conventional unit root tests, however, 

is their low power. 

The fact that time series appear to be nonstationary creates difficulties in eco­

nomic theory. For example, the random walk hypothesis about exchange rate series 

and price level implies economic theory has no explainatory power and often, the pre­

dictions based on theory are even worse than simple time series predictions. The most 

challenging approach is the concept of cointegration by Engle and Granger (1987). 

Cointegration implies that there is equilibrium relationship among the nonstationary 

variables. That is, we can formulate linear functions of the nonstationary time series 

that are stationary. 

The conventional cointegration tests are straight forward extensions of the unit 

root tests using non-cointegration as the null hypothesis and cointegration as an 

alternative. That is, the conventional approach tests whether there is a unit root in 

1 
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the deviation from the equilibrium relationship. 

Recently, the nonstationarity of macro economic time series has been debated in 

the presence of structural breaks. Perron (1989) suggests that most economic time 

series are, in fact, stationary around a broken trend. Accoring to Perron (1989), the 

null of nonstationarity is spuriously accepted by conventional unit root tests, in the 

presence of a structural break. 

The purpose of this disertation is threefold. First, we propose various test statis­

tics for the null of stationarity against the alternative of nonstationarity. Our test 

statistics are designed to be used for univariate as well as multivariate time series. 

The tests using the null hypothesis of stationarity are at least useful as a confirmatory 

data analysis tool. We derive the limiting distributions for various test statistics and 

investigate their finite sample properties by direct simulation. It turns out that our 

test statistics are reasonably powerful. In addition, we compare two testing strategies 

for multiple time series: applying univariate tests for each component of a multiple 

time series and multivariate tests. It is found that the latter is a better testing strat­

egy in terms of finite sample size and power than the former in many cases. To assess 

the finite sample properties, we compare two methods of choosing lag length: fixed 

lag length and automatic lag selection. 

Second, we propose cointegration tests that can be used for a single equation 

as well as a system of equations. We use cointegration as the null hypothesis and 

no-cointegration as an alternative hypothesis. Limiting distributions for the test 

statistics are derived and tabulated. To obtain nuisance parameter-free test statistics, 
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the CCR (canonical cointegration regression) is used in cointegration regression. It is 

also shown that other efficient estimators such as FM-OLS could be used to obtain the 

same analytical results. Finite sample properties are investigated by direct simulation. 

Further, we compare different testing strategies for a system of equations. Specifically, 

we consider a system of two equations and two regressors. 

Third, we suggest stationarity tests for multivariate time series allowing struc­

tural breaks. As argued by Perron (1989), structural break may cause spurious non-

stationary. Therefore, conventional cointegration tests are inconsistent and tend to 

accept the null of nonstationarity. It is also true that stationarity tests are always di­

vergent and tend to reject the null of stationarity when structural breaks are ignored. 

To construct consistent tests under the condition, we use stationarity with structural 

breaks as the null hypothesis against of nonstationarity as an alternative hypothesis. 

Test statistics are direct extensions of stationarity tests. We can allow a variety of 

structural breaks for which limiting distributions are derived and tabulated. Unlike 

Perron (1989), these test statistics do not require exogeneous structural breaks and 

also allow unknown structural break points. 
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CHAPTER II 

Testing the Null of Stationarity for Multiple 
Time Series 

2.1 Introduction 

For univariate time series, there have been several different approaches to the problem 

of testing the null of stationarity against the alternative of unit root nonstationarity; 

see Park and Choi (1988), Bierens (1990), Herce (1989), DeJong, Nankervis, Savin and 

Whiteman (1992), Saikkonen and Luukkonen (1993a, 1993b), Arellano and Pantula 

(1990), Kwiatkowski, Phillips, Schmidt and Shin (1992, hereafter KPSS), Tanaka 

(1990), Khan and Ogaki (1992), Stock (1992), Tsay (1993) and Choi (1992b). In 

addition, Choi and Yu (1993) provide a general framework that generates many of 

these tests. 

However, there has been no procedure available for testing the null of stationarity 

for multiple time series. As a result, researchers had to be content with applying 

the univariate tests to each element of a multiple time series in order to investigate 

the nature of the multiple time series. This procedure of applying the univariate 

tests multiple times is cumbersome and ignores the correlations among the elements 

of the multiple time series. Therefore, the purpose of this chapter is to introduce 

the tests for the null of stationarity that can be applied to multiple time series both 

4 
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with and without the presence of time trends. In order to generate the tests, we 

formulate the multivariate AR(1) representation for a given data by summing it and 

then apply the multivariate AR unit root tests [cf. Phillips and Durlauf (1986)]. This 

method generates various consistent tests in a unified manner, which generalize the 

univariate tests for the null of stationarity studied in Choi and Yu (1993). We also 

report extensive simulation results that check the finite sample performance of the 

tests. In particular, we will compare the strategy of applying the univariate tests 

several times and that of using the multivariate tests. The experimental results in 

Section 5 indicate that there are merits in using the multivariate tests rather than 

applying the univariate tests several times. 

This chapter is organized as follows. Section 2 introduces the test statistics. 

Section 3 derives the limiting distributions of the tests for general time series. Section 

4 extends the tests in Section 3 to the case where time trends are present. Section 

5 and 6 report simulation results. Tests are applied to the real interest rate data in 

Section 7. Section 8 concludes with a summary and further remarks. All proofs are 

in the Appendix A. 

A few words on our notation: All the limits are taken as "T —>• oo" unless otherwise 

specified. Weak convergence is denoted as " =>•". Additionally, "A" signifies the usual 

difference operator. The standard n-vector Brownian motion is written as "W(r)" 

and '%»(•)" denotes the spectral density matrix for {*;*}. The indicator function is 

signified as "!>{•)". Letting the matrix A = [ax, a2, • • •, an]', vec(A) = [a'1? a'2, • • •, a(J', 

Last, "A^'rt" denotes the (i,j) — th element of the matrix A. 
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2.2 Test Statistics 

Let be an n-vector time series defined on the probability space (X, F, P). 

We are interested in testing the null hypothesis 

H0:xt  = 7(0) (2.1) 

against the alternative 

Hi : = /(&,), > 1 for some i (2.2) 

[see Engle and Granger (1987) for the definition of 1(h)]. Under the alternative, we 

allow each element of xt to have different order of integration but require that at least 

one element be nonstationary. Examples of xt under the alternative are: 

xt  = 

and 

x t  = 

1 0 
0 a 

xt-1 + ut, |a| < 1, ut  = 7(0) (2.3) 

1 0 
a 1 

xt-1 + ut, |a| < 1, ut  = 1(0). (2.4) 

For (2.3), = 7(1) and x\2^ = 7(0). For (2.4), = 7(1) and x^ = 7(2) when 

a^O; x^\ x[2^ = 7(1) when a = 0. We also allow the nonstationary elements of the 

time series xt  to be cointegrated under the alternative. That is, letting xt  = [s{, «{]' 

where the s x 1 vector st is stationary and the (n—s) x 1 vector zt nonstationary, there 

may exist anmx(n-s) matrix C\(m < n — s), such that Cizt  = [7(Zi), 1(h),' • •, 

1(1 )], 0 ^ ^ min(^j^.^ # ^n)j J — 1>* * 'j TYI* This definition is slightly more 

general than Engle and Granger's (1987) original definition of cointegration; Engle 

and Granger assume that each element of xt has the same order of integration. 
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There is no parameter of interest for the null (2.1), but we may artificially create 

the point null hypothesis by aggregating the time series {xt} as shown below. Since 

we have under the null, denoting St = x* w^h So = 0, 

St — ASt-i + xt, A — In, (t — 1,2, • • •, T), (2.5) 

the null hypothesis (2.1) is equivalent to 

H'Q : A = IN and xt  = 1(0). (2.6) 

Most AR unit root tests are actually joint hypotheses tests for the location of the 

AR(1) coefficient and the assumption that the error terms are stationary. When 

the given assumption on the error terms is violated, most test statistics diverge. 

Therefore, the null of stationarity can be tested by the multivariate AR unit root 

tests for equation (2.5), assuming that {5*} is an observed time series. Notice that 

under the alternative we have A = yet at least one element of xt is nonstationary, 

and hence the tests we will propose diverge in probability under the alternative, 

yielding consistent tests. 

To derive the LM tests for the null hypothesis (2.6), we assume xt  ~ iid N(0, Q), 

where J2 is a positive definite matrix. The log-likelihood function for equation (2.5) 

is written as 

1 T 

L(A, ft) = —nT/2 - (T/2)ln\Sl\ - - ASt-i)(St  - ASt-1)'. (2.7) 
1 i 

Therefore, under the null hypothesis, 

T 
dL(A, Sl)/dvec(A) = (ft"1 ® In)vec(£ AStS'^) (2.8) 

1=2 
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and 
T 

d*L(A, Sl)/dvec{A)2 = -(ft"1 ® £ St-iS'^). (2.9) 
t=2 

Because the information matrix is block-diagonal, we formulate the LM tests for the 

null (2.6) as follows: 

T T 
LMj = {uec(2A5t5;_1)} ,(ft-1®T-2n-1>ec(^A5't^_1) 

t=2 t=2 

T T 

= (2.10) 
t=2 1=2 

and 

T T T 
LMn = {»«(£ AS.S;.,)}'^-1 0 (53 AStS1,^) 

1=2 1=2 1=2 

= ir{(^As,5;.1)(^s,-1s;.1)-1(f35t.1As;)n-1}, (2.11) 
1=2 1=2 1=2 

A J • 

where ft = T_12Jt=i AStAS't  is a positive definite matrix and converges to ft in 

probability. The difference between LMi and LMn lies in how the estimate of the 

information matrix is chosen. Notice that these two tests are invariant with respect 

to transformations S? = DSt for nonsingular D. Also, these two tests reduce to the 

LM tests proposed in Choi and Yu (1993) when n = 1. 

Rewriting (2.5) as 

ASt  = BSt-1 + xu B = 0, (t = 1,2, • • •, 71), (2.12) 

T~xLMn is equivalent to the Bartlett-Nanda-Pillai trace test in multivariate analysis 

[cf. Anderson (1984, p. 334)]. The equivalence of the Bartlett-Nanda-Pillai trace 
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test and the LM test has also been established elsewhere; see, for example, Ander­

son and Kunimoto (1992). In addition, replacing fl with ft* = 21-1 — 

BSt-i)(ASt - BSt-1)' where B' = (X)f=1 St-iASfi, we find that 

T~xLMn is equivalent to the Lawley-Hotelling trace test [cf. Anderson (1984, p. 

334)], which in turn is equivalent to the Wald test upon standardization. Since ft, 

Q* -?* (I under the null, the LMn and Wald tests have the same limiting distribution. 

We also deduce from the above and the inequality for the Wald, likelihood ratio and 

LM tests [cf. Berndt and Savin (1977)] that the likelihood ratio test has the same 

asymptotic distribution as LMn• Because LMn is more convenient to use and is 

likely to have virtually the same power properties as the Wald and likelihood ratio 

tests both in finite samples and asymptotically, we will not consider the latter two 

tests. 

We may also consider a multivariate analog of the Sargan-Bhargava [cf. Sargan 

and Bhargava (1983)] and Durbin-Hausman [cf. Choi (1992c)] tests for an AR unit 

root: 
T 

SBDH = tr{(T~2 StS'^fl'1}. (2.13) 
t=l 

This test is invariant with respect to nonsingular linear transformations as the LMi 

and LMn tests. 

Assuming that St is not cointegrated, we deduce the asymptotic distributions of 

these tests easily from Phillips and Durlauf (1986). These are: 

LMi =» tr{ C dW{r)W(r)' C W{r)dW{r)'}, (2.14) 
Jo Jo 
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LMn =* M f1 dW{r)W(r)'{ /* W^W^'dr}-1 f W(r)<W(r)'], (2.15) 
Jo Jo Jo 

SBDH =S> tr{ f1 W(r)W(r)'dr}. (2.16) 
Jo 

Notice that LMn has the same asymptotic distribution as Johansen's (1988) test 

for the number of cointegrating vectors. Under the alternative, all the test statistics 

diverge to infinity in probability. This will be discussed later in more general contexts. 

2.3 Extensions to General DGPS 

In this section, we extend the tests in Section 2 to more general data generating 

processes (DGPs). Namely, we assume that xt = Vt under the null and that Afc,'a:^ = 

vj'^ under the alternative, where {ut} is a vector linear process. More specifically, we 

make the following assumptions regarding {ut} : 

OO 

A1 Vt — ^ ] Ci&t—i 
t=0 

oo 
A2 : ^i||C,-|| < oo 

t=0 

CO 

A3 : 
»=0 

A4 : {e4, Ft} is a vector martingale difference sequence, 

A5 : E(ete't\Ft-i) = S, S is positive definite, 

A6 : sup -E(|e^|2+5|i?,t..i) < oo for some 6 > 0, 

OO OO 

A7 : 0/ = 27t/„„(0) = (^ C,)S(^ C,)' is positive definite, 
i=0 t=0 

where C-s are real matrices and ||C,-|| = {tr(CjCj)}1/2. A stationary and invertible 

vector ARM A process is a special case of {ut}. Under Al, A2, A4, A5 and A6, we 
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have as in Phillips and Solo (1992, p. 985) 

[Tr] 

n-i/2r-i/2 ̂ 2 Vt ^ W(r). (2.17) 
1=1 

Also, extending Hannan and Heyde's (1972) results, we have under Al, A4, A5 and 

an assumption implied by A2 that 

T 

T 1 ^ ] ViVf fto, (2.18) 
t=i 

where fto = E(vtv't) = Y^o A3 is required to ensure that the limiting distri­

bution of the partial sum process in. (2.17) is non-degenerate and to ensure that {ut} 

does not have an MA unit root. A7 implies that St is not cointegrated under the null 

hypothesis. 

We modify the LM and SBDH tests in Section 2 along the lines of Phillips (1987) 

and Phillips and Durlauf (1986) such that the asymptotic distributions of these tests 

axe free of nuisance parameters. The modified test statistics are defined as follows: 

T T 
LM? = tr{(T~l  ^ AStS^ - fti)^-1^-1 ^ St-iAS't  - ftOftf1}, (2.19) 

1=2 1=2 

LMfj = ir{(]P LS.SU ~ ™',)(£ S.-iAS; - (2-20) 
1=2 1=2 1=2 

and 
T 

SBDHm = tr{(T~2 £ StS'^1}, (2.21) 
1=1 

where ft; and fti are consistent estimates of ft/ and ftj = SS2 ̂ (uiut)> respectively. 

As in Hannan (1970), we define ft/ as 

1 
C(n)k(n/1), (2.22) 

n=-/ 
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T-n 

C{n) = T-1 £ AStAS't+n (2.23) 
t=2 

and k(n/l) is a lag window. Analogously, we define f2i = Y?n=i C(n)k(n/l). 

Regarding the lag truncation number I and the spectral window, we assume 

A8 :1 —> oo as T —> oo and I = 0(TS), 0 < 8 < i. 

This ensures that the spectral density estimates are consistent. Further, we assume 

for the lag window k(z) that 

A9 : k(z) is a continuous, even function with 

/

OO 

k2(z)dz < oo. 
OO 

Assumptions A8 and A9 imply that 

Y] k(n/l) = 0(T6) as I, T —> oo and 0 < S < 
n — — l  

This result will be used to derive the rate of divergence of the test statistics under 

the alternative and under the null with misspecified time trends. 

Asymptotic properties of the tests proposed in this section are reported in the 

following theorem: 

Theorem 1: Suppose that assumptions A1-A9 hold. 

(a) Under the null hypothesis (2.1), 

(i) LMf =» tr{ f1 dW(r)W(r)' C W{r)dW{r)'}, (2.24) 
Jo Jo 

(») LM% =* tr[ f1 dW{r)W(r)'{ C W(r)W(r)'<ir}-1 f W(r)dW{r)'], (2.25) 
Jo Jo Jo 
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(m) SBDHm =>tr{ f1 W(r)W(r)'dr}. (2.26) 
Jo 

(b) Under the alternative hypothesis (2.2), 

(i) LMf = 0P(T2^~% (2.27) 

(ii) LMJJ = O^T1-6), 

(Hi) SBDHm = OyiT1-*), 

(2.28) 

(2.29) 

where 0 < 8 < |. 

Remarks: 

( ) The tests studied in this theorem can be used exclusively for the multiple time 

series with zero means. 

( ) The asymptotic distributions of the LMfj have been used to test the number of 

cointegrating vectors in Johansen (1988). To our knowledge, the distributions for the 

others have not been used for any statistical inference . 

(c) We report the simulated percentiles of the asymptotic distributions up to n = 

6 in Part (a) of Table 1, which we obtained by generating independent n-vector 

standard normal variates for {ut}?£i 100,000 times except for LMf under n — 1. 

The percentiles for LMf under n = 1 were taken from Choi (1992a), which reports 

its exact asymptotic pdf and cdf. Note also that the asymptotic distribution of 

LMJJ is tabulated in Johansen (1988) by simulation. Our simulated percentiles are 

almost identical with those reported in Johansen. We observe that the asymptotic 

distributions shift away from the origin as we add more variables to the system. We 
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infer from this that the powers of the tests decrease as the number of variables in the 

system increases. 

( d )  In light of Theorem 1 (6), we reject the null hypothesis when the computed values 

of the test statistics are greater than the corresponding critical values. 

2.4 Extensions to DGPS with time trends 

We extend the tests in Section 3 to DGPs with time trends in this section. We assume 

that the observed vector-valued time series {yt}J= i is generated under both the null 

and alternative by 

- A" ~ ff* eg''"} = »<W, t>$ ? 0, i = 1, • • •, n, (2.30) 

where {ut} is a stationary vector linear process as in Section 3. Under the null 

hypothesis (2.1), fc,- = 0 for all i; under the alternative k{ > 1 at least for one i. We 

assume that the true time polynomial orders pi for are known and that they do 

not depend on the order of integration. This is not a restrictive assumption at least 

for economic time series, because it appears that p,- = 0 or 1 is adequate for most 

economic time series. The DGP (2.30) is equivalent to 

y{° = •• + C/' + *if)> (*» £ w). C * °> (2-31) 

ft(,) =  ( k  >  P i ) i  (2-32) 

where = /(&;)]. As discussed in Choi and Yu (1993), this DGP 

is general enough to include most DGPs assumed in economic time series analyses. 

The DGP (2.32) was considered in Section 3 and, therefore, we assume the DGP 
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(2.31) in this section. We also allow (as in Section 2) that the nonstationary elements 

of • • • , are cointegrated. 

Moreover, we do not observe St = ]Ci=ix* in the DGP (2.31), which is required to 

formulate the tests for the null hypothesis (2.1). We can estimate them consistently 

under the null in two different ways. First, we may run the OLS regression 

Vt = Sot° + h 8Pip + xt, p = max{pi, • • • ,jpn}, (2.33) 

and let St = 5Zi=i • Because 6; A Si, (i = 0, • • • , p), {&} can be used to formulate 

the SBDH test. However, using {St} results in degenerate asymptotic distributions 

for the LM tests, because X)t=2 AStS'^ = ^(STS't — A&ASf) and ST = 0. 

The second way of obtaining consistent estimates for {St} is to run the OLS 

regression 

t t 
Pt = So + • • • + Sp J~2jp + St, p = max{px, • • • ,pn}, (2.34) 

3=1 j=l 

where Pt = ]C*_i Vv ft is straightforward to show that St A St and A§t A xt for all 

t. Because ST is not identically zero, we have well-defined asymptotic distributions 

for the LM tests when we use {&}. In addition, the SBDH tests can also be 

formulated by using {5<}. As will be seen later, tests using {St} and {.%} have 

different asymptotic distributions. 

We define the LM and SBDH tests in the same way as in Section 3. 

t r 

LMf = tr^T-1 J2 £ St-iAS't - fli)^1}, (2.35) 
1=2 t=2 

LM% = tr{(£ AS.SU - (2-3«) 
1=2 t=2 1=2 
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T 

SBDHf = tr{(T~2 £ St#)^-1}, (2.37) 
i=l 

and 
T 

SBDH% = tr{(T~2 £ StSJ) fy"1}, (2.38) 
t=i 

where fi/, fii and fii are defined in the same way as in Section 3. 

The asymptotic properties of the tests considered in this section are reported in 

the following theorem. 

Theorem 2: Suppose that assumptions A1-A9 hold. 

(a) Under the null hypothesis (2.1), 

(i) LMf => tr{ f dW(r)W(r)' /* W(r)dW(r)'}, (2.39) 
Jo Jo 

{,ii) LMfj =*> tr[ f1 dW(r)W(r)'{ C ̂ (r^r/dr}-1 C W(r)dW(r)'], (2.40) 
Jo Jo Jo 

(Hi) SBDH% =* tr{ f1 W(r)W(r)'dr}, (2.41) 
Jo 

(iv) SBDHg =* ir{ f1 W(r)W(r)'dr}, (2.42) 
Jo 

where 

W(r) = W(r) — ao^/l aprp+1/(p •+• 1), (2.43) 

W(r) = W(r) — 70^/1 %rV+1/(p + 1)> (2.44) 

on and t,• minimize the least squares criteria in the L% norm, respectively, 

[ ||W"(r) — aor0 Qfprp||2dr, (2.45) 
Jo 

[ ll^(r) - To^/l 7pfp+1/(P + l)l|2^r- (2.46) 
Jo 
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(b) Under the alternative hypothesis (2.2) 

(*) LMf = Op(T2^-% (2.47) 

(ii) LM?X = Op(T1-fi), 

(«»») SBDH% = Op(r1"5), 

(it/) SBDH? = 0V{TX~6), 

(2.48) 

(2.49) 

(2.50) 

where 0 < S < 

Remarks: 

( ) When n = 1, the asymptotic distributions derived in this theorem reduce to those 

of the tests studied in Choi and Yu (1993). 

( ) Except for LMf1 under n = 1, we tabulated the asymptotic percentiles of the tests 

in Theorem 2 by the same simulation methods as in Section 3 for the cases p = 0 or 1. 

The distributions for LM™ under n = 1 were taken from Choi (1992b) which reports 

the exact pdfs and cdfs of these tests. The percentiles are reported in parts (6) and 

(c) of Table 1. We observe as in Part (a) of Table 1 that the distributions shift away 

from the origin as the number of variables in the system increases. Therefore, the 

powers of the tests will decrease as the number of variables in the system increases, 

(c) In light of Theorem 2 (6), we reject the null hypothesis when the computed values 

of the test statistics are greater than the corresponding critical values. 

Also, it has been assumed that the true order of the time polynomial is known both 

under the null and alternative. But selecting order of time polynomial inappropriately 

may result in rejecting the null asymptotically when it is true. More specifically, 
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assume that the true DGP is 

f . ( i ) = 4 V + •  •  • + C 1 " + ( * <  s  pi)> C * °. *<=m, (2-5i) 

but that the tests are formulated by using the regressions 

yt = S0t° + '-- + Sqtq + xt, q< max{pi,• • • ,pn}, (2.52) 

t t 
Pt = So + • • • + Sq ̂ j9 + §t, q < max{pi, • • • ,pn}. (2.53) 

i=l j=i 

The behavior of the test statistics under this circumstance is analyzed in the following 

theorem. 

Theorem 3: Suppose that assumptions A1-A9 hold and that the time polynomial 

order q in the regression models (2.52) and (2.53) is chosen to be less than max {p\, 

•' •> Pn] where pi denote the true time polynomial order for the i — th element ofyt 

in (2.51). Then, under the null hypothesis (2.1), 

(£) LM? = Op(T2^~% (2.54) 

(««) LMPj = Op{Tx~s), (2.55) 

(iii) SBDH™ = Op(211-5), (2.56) 

(iv) SBDH? = O^r1"5), (2.57) 

where 0 < S < 

Remark: These results indicate that we always reject the null asymptotically even 

when the null is true, if the true order of the time polynomial is underestimated. 

Obviously, we do not encounter such difficulties if the true order is overestimated. 

Therefore, in practice, it is advisable to make a generous choice of the order for 
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regression time polynomials to avoid rejecting the null when it is true in fact. For 

most economic time series which show trend components, selecting Pi = 1 appears to 

be appropriate. 

2.5 Finite Sample Power I 

In this section, we investigate the finite sample performance of the tests introduced in 

Sections 3 and 4 by using simulation. In particular, we compare the testing strategy 

of applying univariate tests several times to each component of multiple time series 

with that of applying the multivariate tests to the series. The finite sample size and 

power of the tests proposed in Sections 3 and 4 depend on the sample size T, the lag 

length Z for long-run variance estimation, the lag window chosen and the parameters 

associated with the DGP of {xt} [see Schmidt and Phillips (1992) for related analyses]. 

Further, the finite sample size and power may also depend on the initial variable xo. 

But in this section, we used only the Bartlett lag window and chose XQ = 0 for all 

the experimental results. The univariate and multivariate tests are expected to reject 

too often under the null as the initial variable takes larger values [cf. Choi (1992b)]. 

Random numbers for the simulation results were generated by the IMSL subrou­

tine RNMVN. Empirical power was calculated out of 5,000 iterations at T = 100, 200, 

400 by using the critical values reported in Table 1. For the long-run variance esti­

mation, we chose three values of the lag length Z, i.e., Z = 2, Zi = in<e<7er[4(T/100)1/4] 

and h = integer[l2(T/100)1/4], following Schwert (1989). Note that Zi = 4, 4 and 5 

at T = 100, 200 and 400, respectively, and that I2 = 12, 14 and 16-at T = 100, 200 

and 400, respectively. 
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In Table 2, we report the empirical size of LMi, LMn and SBDH. Data were 

generated as 

xt = 0.8 0.0 
0.2 0.8 

£t_i+et, = 0, et ~ iid N(0, n),e0 = 0, fl = 1.0 0.5 
0.5 1.5 . (2.58) 

Each component of the bivariate time series {st} is 1(0); {xj1^} and are serially 

correlated. Note that the size of all the tests depends on the initial variable XQ in 

finite samples. In Part (a), we report the size of the tests for the case where DGPs do 

not contain time trends. That is, {xt} is assumed to be the observed time series. The 

results for the univariate tests were obtained by calculating the fraction of replications 

for which the null of 1(0) is rejected for at least one series at the 5% level. Because 

the nominal frequency of non-rejection for the bivariate series is 0.952 = 0.9025, the 

numbers for the univariate tests should be compared to 1 — 0.9025 ~ 0.1. When 

the numbers are greater than 0.1, the univariate tests are thought to reject too often 

under the null. For meaningful comparisons, we calculated the fraction of replications 

for which the multivariate tests reject the null at the 10% level. When we choose 

I — I2, the size for the univariate and multivariate tests is close to 0.1 relative to other 

choices of the lag length but the univariate tests tend to reject slightly more often 

than the multivariate test. When I = 2 or the multivariate tests rejects more often. 

Further, we find that the LMn tests tend to reject less often in both univariate and 

multivariate cases. In Part (b), the size of the tests for demeaned series is reported. 

We find again that 1 = 12 yields size relatively close to 0.1 for both the univariate and 

multivariate tests. Comparing the univariate and multivariate tests, the univariate 

tests tend to reject slightly more often than the multivariate test when / = I2. In 
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% 
most cases, the SBDH tests tend to reject more often than the LMi and LMn tests, 

and LMn tests tend to reject less often than the others. In Part (c), the size of the 

tests for demeaned and detrended series is reported. When I = h is chosen, there 

are the least size distortions and the univariate test!! tend to reject more often than 

the multivariate tests. Overall, the univariate SBDH tests tend to reject more often 

than the other tests and the univariate LMn test tends to reject less often than the 

other tests. 

In Table 3, we report empirical power of LMj, LMn and SBDH. Data were 

generated as 

xt = 1.0 0.0 
0.2 0.8 

1.0 0.5 
0.5 1.5 

(2.59) xt-i + euxo = 0,et ~ iid N(0,Sl),eo = 0,fi = 

Note that x[2^ = 7(1) and that {s^} and {rc|2^} are serially correlated. The finite 

sample power of all the tests does not depend on the initial variable x0, excepting 

Part (a). In Part (a), we report the power of the tests for the case where DGPs do not 

contain time trends. The univariate and multivariate tests are reasonably powerful, 

but the multivariate tests are slightly more powerful than the univariate counterparts 

when T = 200 and 400. Among the multivariate tests, the LMj tests appear to be 

more powerful than the others. In Part (6), the power of the tests for demeaned series 

is reported. We find that the multivariate tests are more powerful than the univariate 

counterparts. Among the multivariate tests, LMn is the least powerful. In Part (c), 

the power of the tests for demeaned and detrended series is reported. The power of 

the test is lower than that for the demeaned series. Excepting the SBDH tests, the 

multivariate tests reject more often than the univariate counterparts. The univariate 
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SBDH tests are more powerful than the multivariate counterparts, but remember 

that the univariate SBDH tests suffer from size distortions as we have seen in Part 

(c) of Table 2. 

In Table 4, we report the empirical power of LMi, LMn and SBDH for the data 

generated by 

xt = 1.0 0.2 
0.0 0.8 

1.0 0.5 
0.5 1.5 

. (2.60) xt_i+et, x0 = 0, et ~ iid N(0, ft), e0 = 0, Q, = 

Note that xj1^ = 7(1) and x[2^ = 7(0) and that {x^} and {x^} axe serially corre­

lated. The finite sample power of all the tests does not depend on the initial variable 

Xo, excepting Part (a). In Part (a), we report the power of the tests for the case 

where DGPs do not contain time trends. The univariate and multivariate tests are 

reasonably powerful, but the multivariate tests are overall more powerful than the 

univariate counterparts when T = 200 and 400. Comparing the multivariate tests, 

the LMi test is most powerful at T = 100 but LMn is most powerful at larger sample 

sizes. In Part (6), the power of the tests for demeaned series is reported. We find 

that the multivariate LMi and LMn tests are more powerful than the univariate 

counterparts but that the univariate SBDH tests are more powerful than the mul­

tivariate counterparts. Among the multivariate tests, LMn is the least powerful. In 

Part (c), the power of the tests for demeaned and detrended series is reported. Ex­

cepting the SBDH tests, the multivariate tests reject more often than the univariate 

counterparts. Among the multivariate tests, the LMi test is the most powerful. 

To sum up our findings 

(i) The multivariate tests show more stable size than their univariate counterparts 
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when the lag length is chosen as I = I2. 

(ii) The multivariate tests are overall more powerful than their univariate counter­

parts. This is more conspicuously shown in the case of LMi tests. 

(ii) The multivariate LMj tests show the most stable size and are the most powerful 

among the multivariate tests in most cases; therefore, the multivariate LMi tests are 

preferred to other multivariate tests. 

However, as is the case with most simulation studies, these conclusions depend on the 

experimental format chosen. Further, keep in mind that all the tests are not powerful 

for the demeaned and detrended series even at a sample size as large as T = 200. In 

addition, we may need to perform more simulation to characterize the finite sample 

performance of the tests more completely by varying the DGPs and the values of the 

initial variables. 

2.6 Finite sample power II 

In this section, we investigate the finite sample performance of the tests by using 

simulation. In particular, In addition, tests using the automatic lag selection and 

those using a fixed lag length are compared. In this section, we used only the quadratic 

spectral lag window and chose a?o = 0 for all the experimental results. 

In the unit root literature, size-adjusted empirical power is often reported, but the 

size-adjusted power for the stationarity tests does not provide meaningful information 

about the finite sample power of the tests because the empirical size of the stationarity 

tests depends on the value of the initial variable. For this reason, size adjustment 

was not made for the empirical power of the testes reported in this section. 
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Random numbers for the simulation results were generated by the IMSL subrou­

tine RNMVN. The fixed lag truncation number for the long-run variance estimation 

was chosen as Z2 = in<e^er[12(T/100)1/4], following Schwert (1989). Note that /2 = 12, 

14 and 16 at T = 100, 200 and 400, respectively. We obtained simulation results us­

ing h = in<eflrer[4(T/100)1/4] (reported in previous section of this dissertation), but 

the results using I2 appear to be more satisfactory. For the automatic lag selection, 

Andrews' (1991) methods with AR(4) and VAR(l) approximations for univariate and 

multivariate series, respectively, were used. We also tried the VAR(4) approximating 

model for multivariate series, but there were no significant differences. In order to 
A A 

make the tests consistent, we put a restriction that / = 2 if / > Tc. We chose e = 0.7 

for raw series and e = 0.65 for detrended series. 

In Table 34, we report the empirical size of LMi, LMn and SBDH. Data were 

generated as 

xt 
0.8 0.0 
0.2 0.8 

xt_i+et, x0 = 0, et ~ iid N(0, S), e0 = 0, S = 1.0 0.5 
0.5 1.5 

. (2.61) 

In Part (a), the results for the tests using raw series are reported. That is, {xt} is 

assumed to be the observed time series. When the automatic lag selection methods 

are used, the univariate tests are shown to keep the nominal size better than the 

multivariate counterparts, though both sets of tests show serious size distortions at 

T = 100. At T — 200 and T = 400, however, the univariate tests have empirical size 

reasonably close to 0.1. When the fixed lag is used, the univariate and multivariate 

tests show similar performance and the empirical size is reasonably close to 0.1 except 

LMJJ- In addition, the tests using the fixed lag keep the nominal size appreciably 
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better than those using the automatic lag selection. Comparing the three tests, LMi 

and SBDH tend to reject more often than LMn in all the cases. 

In Part (6), the results based on demeaned series are reported. The multivariate 

tests using the automatic lag selection are shown to have appreciably better perfor­

mance than those in Part (a). Especially at T = 200 and T = 400, the size is close 

to 0.1 except for LMn, which tends to reject less often than the others. When the 

automatic lag is used, the multivariate tests show more stable size than the univariate 

counterparts except LMj at T = 100. For both the univariate and multivariate tests, 

using the fixed lag yields empirical size reasonably close to 0.1 at all sample sizes, 

except for SBDHT at T = 100 and LMn. Note also that the the univariate and 

multivariate tests show similar performance when the fixed lag is employed. Com­

paring the fixed and automatic lags for the multivariate tests, they provide almost 

similar results at T = 200 and T — 400. But at T = 100, the fixed lag yields better 

results than the automatic lag except for LMn• For the univariate tests, the fixed 

lag yields better results at T — 100 and T = 200 except for LMn• At T = 400, both 

the automatic and fixed lags yield similar results. Comparing the four tests, LMj, 

SBDHT and SBDHB reject more often than LMn in all the cases. 

In Part (c), the results based on demeaned and detrended series are reported. 

We observe results similar to those in Part (6). The multivariate tests using the 

automatic lag selection keep the nominal size well at T = 200 and T = 400 except 

LMn which tends to reject less often than the others; and perform slightly better 

than the univariate counterparts except LMi at T = 100. Using the fixed lag yields 
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the empirical size reasonably close to 0.1 for both the univariate and multivariate 

tests except for SBDHT at T = 100 and LMJI. The LMn tests tend to reject too 

infrequently. Further, there are no appreciable differences between the univariate and 

multivariate tests when the fixed lag is used. For the multivariate tests, the fixed and 

automatic lags provide almost similar results at T = 200 and T = 400. But the fixed 

lag yields better results than the automatic lag except for LMn at T = 100. For the 

univariate tests, the fixed lag yields slightly better results at T — 100 and T = 200 

except for LMi and LMn• In. addition, it is observed that the fixed and automatic 

lags yield similar results at T = 400. Comparison of the four tests yields the results 

similar to those in Part (6): LMi, SBDHY and SBDHG reject more often than LMn 

in all the cases. 

In Table 35, we report empirical power of LMi, LMn and SBDH. Data were 

generated as 

xt = 1.0 0.0 
0.2 0.8 

xt-i + et, xq = 0, et ~ iid N(0, S), e0 = 0, S = 1.0 0.5 
0.5 1.5 

(2.62) 

In Part (a), we report the power of the tests for raw time series. When the automatic 

lag is used, it is seen that the multivariate tests are less powerful than the univariate 

counterparts. Considering that the multivariate tests show more size distortions than 

the univariate counterparts, the power advantage of the univariate tests over the 

multivariate counterparts as we observe here appear to be real. Now comparing 

the univariate and multivariate tests using the fixed lag, we find that both sets of 

tests show similar performance except LMJJ at T = 100 and T = 200. The power 

performance of the tests using the automatic lag is quite different from that of the 
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tests using the fixed lag. In all the cases except the multivariate LMn at T = 200, 

the tests using the automatic lag are more powerful than those using the fixed lag. 

This is well expected from the analytic result in Part (6) of Theorem 1. Comparing 

the three tests, LMi and SBDH reject more often than LMn in all the cases except 

those of the univariate tests using the fixed lag at T = 200 and T = 400. 

In Part (6), the power of the tests for demeaned series is reported. Here we 

find that the multivariate tests using the automatic lag are more powerful than the 

univariate counterparts using the automatic lag unlike in Part (a). Because the 

multivariate tests keep the nominal size better than the univariate tests as we have 

seen in Part (2) of Table 2, these results imply that the multivariate tests using the 

automatic lag are more powerful than the univariate counterparts. Comparing the 

power performance of the tests using the fixed lag, we do not find any significant 

differences except that the multivariate LMJ is more powerful than the univariate 

LMI. But there are quite striking differences in power performance between the 

tests using the automatic lag and those using the fixed lag. All the tests using the 

automatic lag are appreciably more powerful than corresponding tests using the fixed 

lag. In the case LMI at T = 200, for example, the power gain for the univariate 

test is 0.76, while that for the multivariate LMI is 0.64. Among the four tests we 

considered, LMI, SBDHT and SBDHB appear to be more powerful than LMN] and 

SBDHT and SBDHB are slightly more powerful than LMI. 

In Part (c), the results based on demeaned and detrended series are reported. In 

general, we find that the power of the tests decrease as compared to Part (6). For 
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these results, we may give essentially the same interpretations as in Part (6). The 

multivariate tests are generally more powerful than the univariate counterparts; and 

the tests using the automatic lag are more powerful than the corresponding tests using 

the fixed lag without any exception. Further, LMI, SBDHT and SBDHB appear to 

be more powerful than LMN; and SBDHT and SBDHB are slightly more powerful 

than LMJ. 

In Table 36, we report the empirical power of LMi, LMn and SBDH for the 

data generated by 

xt -
1.0 0.2 
0.0 0.8 

®t_i+et,a;o = 0, et ~ iid N(0, S), eo = 0, S = 
1.0 0.5 
0.5 1.5 

(2.63) 

In Part (a), we report the power of the tests for raw time series. As in Part (a) of 

Table 3, the multivariate tests using the automatic lag are less powerful than the 

univariate counterparts in all the cases. When the fixed lag is used, the univariate 

tests are more powerful in most cases. Comparing the results based on the fixed and 

automatic lags, the tests using the automatic lag are more powerful in all the cases 

except the case of LMn at T = 200 and T = 400. Comparing the four tests, LMn 

tends to be less powerful than the others in most cases except a few. 

In Part (6), the results for demeaned series are reported. Unlike in Part (a), 

the multivariate tests using the automatic lag are more powerful than the univari­

ate counterparts using the automatic lag except SBDHT and SBDHB• But these 

exceptional cases may be due to the size distortions of the univariate SBDHT and 

SBDHB. When the fixed lag is used, the multivariate tests are more powerful than 

the univariate counterparts except SBDHT and SBDHB at T = 100. The power 
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differences in these exceptional cases are minimal. In the case of LMi, there are 

significant power advantages for the multivariate tests. At T = 400, for example, the 

multivariate test is twice as powerful as the univariate test. The power differences 

between the tests using the automatic and fixed lags are quite striking as in Part (6) 

of Table 3. These differences are more appreciable in larger samples, as we expect 

from Part (b) of Theorem 2. Among the four multivariate tests using the automatic 

lag, the LMn test appears to be less powerful than the others. 

In Part (c), the results for demeaned and detrended series are reported. As in 

Part (c) of Table 3, we find that the power of the tests decreases relative to Part (6). 

For these results, we may give essentially the same interpretations as in Part (6). The 

multivariate tests are generally more powerful than the univariate counterparts except 

SBDHT and SBDHB that use the automatic lag. But these exceptional results may 

be due to the size distortions of the univariate SBDHT and SBDHB tests using the 

automatic lag. Further, the tests using the automatic lag are more powerful than the 

corresponding tests using the fixed lag without any exception. Additionally, LMI, 

SBDHT and SBDHB appear to be more powerful than LMN. 

To sum up our findings, 

(i) For raw time series, the multivariate tests using the automatic lag selection 

methods do not keep the nominal size well relative to the univariate counterparts and 

are less powerful in most cases. But the univariate tests using the automatic lag keep 

the nominal size reasonably well in large samples and more powerful than the others. 

The univariate tests using the fixed lag keep the nominal size appreciably better than 
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those using the automatic lag at T = 100 but are less powerful than the univariate 

tests using the automatic lag. 

(ii) For detrended series, the multivariate tests using the automatic lag keep the 

nominal size reasonably well at T = 200 and T = 400 and outperform the univariate 

counterparts using the automatic lag selection in terms of size. Further, the multi­

variate tests using the automatic lag selection methods are appreciably more powerful 

than other kinds of tests. But at T = 100, the multivariate tests using the automatic 

lag selection, especially SBDHT and SBDHB, suffer from size distortions. 

Based on the various simulation results we have considered, we make the following 

recommendations for empirical practices. 

(i) For zero-mean time series, use the univariate LMJ and SBDH tests with the 

automatic lag selection when sample size is large. These tests are more powerful and 

keep the nominal size better than LMn. When sample size is as small as 100, use 

the univariate LMJ and SBDH tests with the fixed lag in order to minimize size 

distortions and attain high finite sample power. 

(ii) For detrended time series, using the multivariate tests with the automatic lag 

selection appears to be a good testing strategy in the light of empirical size and power 

in moderately large samples. Especially, the LMI, SBDHT and SBDHB tests are 

more powerful and keep the nominal size better than the LMn test. But in samples 

as large as 100, size distortions are expected for the tests using the automatic lag. 

This is more conspicuous in the case of the SBDHT and SBDHB tests. Therefore, 

the results from the automatic multivariate tests at sample sizes as large as 100 should 
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be interpreted with caution. 

However, as is the case with most simulation studies, these recommendations 

critically depend on the experimental format chosen, and hence are at best of tentative 

nature. Therefore, the reader is advised to accept the above recommendations with 

this caveat in mind. 

2.7 Applications 

In this section, we apply the tests proposed in Section 4 to the data studied in 

Kugler and Neusser (1993). The data are the monthly real interest rates over the 

period 1980 to 1991 for the USA, Japan, the UK, the FRG, France and Switzerland. 

The reader is referred to Kugler and Neusser for more detailed descriptions of these 

data. Kugler and Neusser used the co-dependence approach due to Gourieroux and 

Peaucelle (1989) in order to test the real interest parity hypothesis. Because the co-

dependence approach assumes that the given vector time series is stationary, Kugler 

and Neusser applied the unit root tests to each series and reported that the the null 

of a unit root is easily rejected for all the series. But the results from the augmented 

Dickey-Fuller tests seem to be sensitive to the choice of lag length, while the Phillips-

Perron tests tend to give unanimous results. In order to check Kugler and Neusser's 

test results, we applied our tests to the series. 

Before applying our tests to the Kugler-Neusser data, we drew the series in Figures 

1-6. The figures show that there does not exist any noticeable trend component in 

each series. Therefore, we tested the null of level-stationarity (i.e., p, = 0 for i = 1, 2, 

• • •, 6). We used the automatic lag selection method with the same lag window and 
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restriction as in Section 6 for both the univariate and multivariate tests. First, we 

applied the univariate tests to each series, the results of which are reported in Part 

(a) of Table 37. It is shown that the null of level-stationarity is not rejected at the 

5% significance level for all the series and tests, excepting the case of LMI for France. 

But at the 10% level, the null is rejected for the USA series when the SBDHT and 

SBDHB tests are used. The results from applying the multivariate tests are reported 

in Part (6). of Table 37. Here we find that the null is not rejected at the 10% level 

for all the tests. The results in Table 37 and Figures 1-6 provide strong evidence 

that the real interest data are level-stationary, and hence support the unit-root test 

results reported in Kugler and Neusser. Further, it is illustrated that the multivariate 

tests which recognize the dynamic and static correlations among the six series provide 

more clear-cut evidence than the univariate tests. 

2.8 Summary and Further Remarks 

We have introduced tests for the null of stationarity that can be used for multiple 

time series. The asymptotic distributions were obtained in a unified manner by using 

the standard vector Brownian motion and the test consistency was established. The 

effects of misspecifying the order of time trends were also analyzed. Simulation results 

indicate that the tests we have introduced work reasonably well in finite samples 

and that using the multivariate tests is a better testing strategy than applying the 

univariate tests several times to each component of a multiple time series. The tests 

were applied to the real interest rate series of six major industrialized nations studied 

in Kugler and Neusser (1993). The multivariate tests are shown to provide clear-cut 
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evidence that the vector time series are level-stationary. Among the multivariate tests 

we introduced, the LMi tests show the best performance and are recommended for 

empirical work. 
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CHAPTER III 

Testing for Cointergration in a System of 
Equations 

3.1 Introduction 

Since the influential work by Engle and Granger (1987), there have been many pro­

cedures for testing cointegration. Notably, most of the tests developed at the early 

stage of research in cointegration were designed for the null of non-cointegration (cf. 

Engle and Granger (1987), Phillips and Ouliaris (1988,1990), Johansen (1988), Stock 

and Watson (1988), Choi (1991,1992d)). However, it appears appropriate to take the 

null as cointegration, because most economic theories are based on long-run economic 

relationship or the cointegrating relation among economic variables and, therefore, it 

is desirable to minimize the error of falsely rejecting the null of cointegration. This 

point has been raised by many researchers whom we do not fully cite here. 

In response to the need for cointegration tests that take the null as cointegration, 

there have been a few testing procedures most of which appeared relatively in recent 

years. These include Park (1990), Hansen (1992), Tanaka (1990), Shin (1993) and 

Quintos and Phillips (1992). Park (1990) uses the variable addition methods for 

devising tests, but the latter four articles use the framework of testing parameter 

constancy. Though all of these tests take the null as cointegration, the alternatives 
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for these tests are different. The alternative for Park's and Shin's tests is explicitly 

non-cointegration. But Hansen's (except the Lc test) and Quintos and Phillips' tests 

do not take the alternative as non-cointegration, though these tests are expected to 

have asymptotic power against the alternative of non-cointegration. Further, all of 

the tests that appeared in the literature so far can be used only for a single equation. 

To date, there have not been any testing procedures that can be used for testing the 

null of cointegration in a system of equations. In the light of our general interest in 

simultaneous relations among economic variables, it is deemed useful to devise such 

procedures. 

Therefore, the purpose of this chapter is to propose tests for the null of cointe­

gration that can be applied to a system of equations. These tests are analogues to 

the tests for the null of stationarity for multiple time series studied in Chapter II. 

Unlike the previous approaches, we use a general framework that generates various 

kinds of consistent tests for the null of cointegration that have not been introduced 

in literature. This framework also generates Shin's (1993) tests when only a single 

equation is considered. Note that the same framework was also used for devising tests 

for the null of I(m) against the alternative of I(m + k) for univariate time series (cf. 

Choi and Yu (1993)). 

In devising the cointegration tests for a system of equations, we use the residu­

als from Park's (1992) canonical cointegrating regression (CCR). This procedure has 

mainly been developed for efficient estimation of and statistical inference on cointe­

grating vectors. But in this chapter CCR is used to devise nuisance-parameter-free 
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tests for cointegration. By contrast, it is difficult to eliminate nuisance parameters in 

the limit if we use OLS residuals to formulate the tests. This will be shown in Section 

5. We may also use Phillips and Hansen's fully modified OLS (FM-OLS) methods 

instead of CCR, which is also illustrated in Section 5. 

Using the multivariate tests for a system of equations is more convenient than 

applying univariate tests several times to each equation when we wish to test the 

cointegrating relations in more than one structural equations. Besides this conve­

nience in use, some system cointegration tests have better finite sample properties 

than corresponding univariate tests as the simulation results in Section 6 indicate. 

In addition, once we establish cointegrating relations, we may use the CCR esti­

mates already obtained for computing tests in order to do statistical inference on 

cointegrating matrices. These CCR estimates are also known to be efficient. Hence, 

estimation, statistical inference on cointegrating matrices and testing cointegration 

can be done simultaneously. This is in contrast to some other procedures in which 

testing cointegration and estimating cointegrating matrices are done separately. 

This Chapter is organized as follows. Section 2 introduces the models, hypothesis 

and assumptions. Section 3 derives the asymptotic distributions for the multivariate 

feasible CCR estimates. Section 4 introduces test statistics and derives the asymptotic 

distributions of the tests for general time series. The rates of divergence of the tests 

under the alternative are also reported. Section 5 studies the properties of the tests 

based on residuals from other estimation methods (FM-OLS and OLS). Section 6 

reports simulation results. Section 7 concludes with a summary and further remarks. 
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All proofs are in the Appendix B. 

A few words on our notation: All the limits are taken as "T —> oo" unless otherwise 

specified. Weak convergence is denoted as " =>". Additionally, "A" signifies the 

usual difference operator. The relation of equivalence in distribution is denoted by 

" =". When every element of the matrix A is Op(Tk), it is compactly written as 

"A = Op(Tk)". Further, the spectral density matrix of the vector series {xt} is 

denoted as "/**(•)"• Last, "A^" denotes the (i,j) — th element of the matrix A. 

3.2 The Models, Hypotheses and Assumptions 

We consider the system of equations 

where yt and xt denote nxl and mxl vector time series, respectively. We assume 

that yt, xt = 7(1). When u* = 1(0), each equation in the system of equations 

(3.1) signifies a cointegrating relation between an element of yt and xt. Methods of 

estimation and inference for the system of equations (3.1) are discussed in Phillips 

and Hansen (1990), Park (1992) and Phillips (1990), among others. When ut = 1(1), 

the regression results based on the system of equations (3.1) are spurious in the sense 

of Granger and Newbold (1974), as analyzed in Phillips (1986). 

As a direct extension of model (3.1), we may also consider 

where c* = [1, t ,  •  •  • ,  t p ] '  and xt = 7(1). It is appropriate to use this model when yt 

yt = Axt + ut, (t - 1,2, —, jT), (3.1) 

yt = Hct + Axt + ut, (< = 1,2,  —, T),  (3.2) 
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contains nonstochastic time trends, as represented by 

y, = Fc, + y°, »," = /( 1). (3.3) 

Asymptotic properties of the OLS estimates for this model up to p = 1 are studied 

in Park and Phillips (1988). In applications, the regressor xt may also contain time 

trends. That is, 

The asymptotic properties of the tests we are to introduce do not change at all for this 

regressor. This will be explained in a remark after Theorem 1 in Section 4. Therefore, 

we assume without loss of generality for the asymptotic properties of the tests that 

G = 0. However, when the regressor contains time trends, we need to estimate 

by running the OLS regression 

xt — Get + Xf, x° = 7(1). (3.4) 

xt = Gct + x. «o 
xt) (3.5) 

or equivalently 

A Xt = KAct + Ax° (3.6) 

in order to calculate OCR estimates. 

We are interested in testing the null hypothesis 

H 0 : u t  =  7(0) (3.7) 

against the alternative 

Hi : = 7(1) for at least one i. (3.8) 
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The null hypothesis (3.7) is equivalent to that every equation in the system of equa­

tions (3.1) or (3.2) denotes the cointegrating relation, and hence that an equilibrium 

relation exists between yt and xt. Under the alternative, at least one element of ut is 

nonstationary. 

Letting wt = (uj, A®J)', we assume under the null that wt satisfies the assumptions 

A1-A9 in Chapter II. A stationary and invertible vector ARMA process is a special 

case of {wt}. Under Al, A2, A4, A5 and A6, we have as in Phillips and Solo (1992, 

p. 985) 

[ * « ]  ;  ,  ( 3 . 9 )  
t=i v ' 

where B(r) is a Brownian motion with covariance matrix ft and [®] denotes the integer 

part of x. Also, extending Hannan and Heyde's (1972) results, we have under Al, 

A4, A5 and an assumption implied by A2 that 

r-'£>,wi AA, (3.10) 
t=l 

where A = E(wtw't) = A3 is required to ensure that the limiting 

distribution of the partial sum process in (3.9) is non-degenerate and to ensure that 

{u;t} does not have an MA unit root. A7 implies that ^2*=1 W{ is not cointegrated 

under the null hypothesis. 

Further, we decompose and partition fI as 

fi = A+ E + S' = 
n m 

fill ftl2 
ft21 ft22 

n 
m 

(3.11) 



www.manaraa.com

40 

where S = E(wtwt-i). Also, we let 

n m 
r = A + E =  Tn Ti2 

I^i I\j2 

n m 
n r Ti r2 1 n + m ' ^3-12^ m [ Ti I2 ] n + 

This partition of T will be used later for defining the feasible CCR estimators. 

3.3 The Feasible CCR 

In this section, we briefly explain the feasible CCR for multivariate time series. The 

reader is referred to Park (1992) and Park and Ogaki (1991) for details on the CCR 

methods. For the feasible CCR, we transform the regressor and regressand and then 

apply the OLS procedure. For the system of equations (3.1), the transformed model 

is given as 

Vt = Ax* + <, (3.13) 

where 

Vt = Vt ~ [A_1f2A' + (OjO^fi^1)']'^) (3.14) 

x; = xt - (A_1f2)'u>t, (3.15) 

= ut — — (A — A)(A-1f2)'«;t, (3.16) 

wt = (u't, Ax't)', (3.17) 

ut = yt - Axt, (3.18) 
T T 

t=i 1=1 
T 

A = T~ x  yj wtw't, (3.20) 
1=1 
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i 

ft = £ C ( j ) k ( j l l ) ,  (3.21) 
i=-i 

T-j 

0 ( j )  =  T - ' Y , (3-22) 
t=2 

I 
2 = (3.23) 

i=i 

and &(•) is a lag window. Note that ft and f are consistent estimates of ft and T, 
A A A  A  A  

respectively, and that r2, fti2 and ft22 are obtained from T and ft by appropriate 

partitions of these matrices. 

The asymptotic distribution of the OLS estimate from the regression model (3.13) 

is given in the following lemma, which is a trivial extension of Park's (1992) Theorem 

4.1 to the case of multivariate time series. 

Lemma 1. Suppose that assumptions A1-A9 hold true. Then, we have 

T{A" — A) =${ [ <iBi.2(r)B2(r)'}{ /' B2(r)Bj(r)'A-}-\ (3.24) 
Jo Jo 

where 

and 

a- = (£ (3.25) 
t=i 1=1 

J?i.2(r) = Bi(r) - fti2ft22 B2(r). (3.26) 

Note that J3i.2(r) is independent of l?2(r) and that the covariance matrix of i?i.2(r) 

is ftn.2 
= ftn — fti2ft22^ft2i. 

For the system of equations (3.2), we run the OLS regression 

yt = Hct + Axt + ut, (3.27) 
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and let wt = (u't, Ax't)'. Then, the transformed regressor and regressand are defined 

in the same way as for (3.13) except that we replace A and wt with A and wt> 

respectively. When the regressor contains time trends as represented by equation 

(3.4), we let wt = (uj, A®?')', where Ax° is from the OLS regression (3.5) or (3.6). 

The feasible CCR estimate of the coefficient matrix B = (H, A) is obtained by 

running the OLS regression on 

yt = Bqt + ut, (3.28) 

where qt = (cj, x't)', and yt and xt denote the transformed time series. Note that we do 

not have to transform the time polynomials for the CCR. We report the asymptotic 

distribution of the OLS estimate of the coefficient matrix B in the following lemma. 

Lemma 2. Suppose that assumptions A1-A9 hold true. Then, we have 

(B - B)D t =>• { f dB1.2(r)Q(r)'}{ C Q(r)Q(r)'dr}~\ (3.29) 
Jo Jo 

where 

& = E y*?t)(%2 (3-30) 
t=i i=x 

D t = diag[T^2, T1+1/2, • • •, Tp+1/2, T,---,T] (3.31) 

and 

Q ( r )  = [1, r, • • •, rp, B2{r)']'. (3.32) 

Remark: Note that this result is obtained for the case where the regressor xt does not 

contain time trends. When the regressor xt contains time trends as in equation (3.4) 

and, therefore, Ax° is estimated by an auxiliary OLS regression, some feasible CCR 
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coefficient estimates for time trends do not have the same distributions as reported 

in this lemma. This problem is of separate interest and will be studied further else­

where. It is also expected that other efficient procedures for estimating cointegrating 

equations with time trends share this problem. However, this problem does not cause 

any difficulties for the asymptotic distributions of the tests we are to derive in Section 

4. 

We use ST = $^i=i (YI—BQI) to formulate the SBDH test that will be introduced in 

Section 4. However, using ST for the LM tests introduced in Section 4 results in degen­

erate asymptotic distributions, because J2t=2 = — YlJ=i AStAS't) 

and ST = 0. 

Therefore, we consider the regression model 

S» = BS< + S?, (3.33) 

where Sf = £)!=i &"> &t — ]C<=i an<^ &t = ]Cl=i The OLS estimate of B from 

this regression model has the following asymptotic distribution. 

Lemma 3. Suppose that assumptions A1-A9 hold true. Then, we have 

(B - B)DT =* { f1 
B1.2(r)S{r)'dr}{ C S(r)S{r)'dr}-\ (3.34) 

Jo Jo 

where 

B = ( E  W ) ( £  S ( r )  =  f  Q ( s ) i s ,  (3.35) 
t= 1 t-1 

and DT and Q(s) are as defined in Lemma 2. 

We will use the regression residual St — BSf in order to formulate the LM tests in 

Section 4. 
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3.4 Test Statistics and Asymptotic Results 

We introduce tests for the null hypothesis (3.7) in this section. The tests are analogues 

of the multivariate tests for the null of stationarity introduced in Chapter II. Under 

the null, we have u* ut — and ut ut — fli2for each t. Because 

Ut = 7(0) under the null and Axt = 1(0) both under the null and alternative, the null 

hypothesis (3.7) is equivalent to, at least asymptotically, 

H0 : u* = 7(0) for model (3.1) (3.36) 

and 

HQ : ut = 1(0) for model (3.2). (3.37) 

Because u* and Ut are not observed in practice, we use CCR residuals to formulate 

the tests. The test statistics for the system of equations (3.1) are defined as follows: 

T T 
LMT = irftT"1 A5*5^! - kt'k'^KT-1 S^ASF - ktk(3.38) 

t=2 t=2 

LM„ = ir«E - TSt*!)(£, slisl'-iT\Y, s'-iAst ~ 1} 
t=2 t=2 1=2 

(3.39) 

and 
T 

SBDH = tr{(T~2 •£ (3.40) 
t=1 

where 

t 

s; = J2{y< - * = [/, (3.4i) 
»=1 
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and 

I T-j 

n ; « = E  D'uwm, D'U)=T-1 ew - ̂*,*)(»«, - (3.42) 
j=-i t=1 

Regarding the lag truncation number I for we also assume A8 and A9. Note 

that fij12 is a consistent estimate of fin.2 = fin — which is the covariance 

matrix of Bi.2(r). 

We formulate the test statistics for the system of equations (3.2) by using St = 

Y?i=i(yi ~ BQI) from the regression equation (3.28) and ST = S? — BSJ[ from the 

regression equation (3.33). The test statistics are 

T T 
LMX = ̂ {(r-1 YI - K£'k')nil2(T-L £ &_iA# - /CEAC')^}, (3.43) 

1=2 1=2 

LM„ = (R{(E A51S;.L - T/CS'«')(E 5<->5U)_1(E &-I 
1=2 1=2 1=2 

(3.44) 
r 

SBDH, = ir{(T"2 E AiJfej}, (3.45) 
1=1 

T 
SBDH,, = tr{(T-2 E S,Si)n:i2}, (3.46) 

t=l 

where 

and 

l T-j 
fillj = E 60'W/<), i>U) = T-1  E AS,AS;+j, (3.47) 

j=-l 1=1 

' -
ftiu = E V(J) = T-1 E(S< - £»)(*« - •»«<«)'. (3.48) 
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Note that k and S are consistent estimates of k and E, respectively, which use {it;*} 

and {Axt}. Regarding the lag truncation number I for S7J12, we also assume A8 and 

A9. Note that Cln.2 and fin.2 are consistent estimates of ftn.2 = fin — Sli2£l22Sl2i. 

The asymptotic null distributions of the tests we have introduced are reported in 

the following theorem. 

Theorem 1. Suppose that assumptions A1-A9 in Section 2 hold true. Under the 

null hypothesis (3.7), we have: 

(i) For the system of equations (3.1), 

LMt =• tr[{ f dV*{r)V*{r)'}{ f V*{r)dV*(r)')) (3.49) 
Jo Jo 

LMn => tr[{ f dV*(r)V*(r)'}{ [ 
Jo Jo 

• {  f  V*(r)dV(r)'}] (3.50) 
Jo 

SBDH =» tr[ f  V*(r)V*(r)'dr] (3.51) 
Jo 

where 

V*(r) = Wi(r) - { f1 ̂ (5)^2(5)'}{ T TFa(«)W2(« W_1Wa(r), (3.52) 
Jo Jo 

dV*(r) = dWi(r) — {  f  dWi(s)W2(s)'} 
Jo 

•{/ W2(s)W2(sydr}-1W2(rydrt (3.53) 
Jo 

Wi(r) and W2{r) are independent standard vector Brownian motion of size n and m, 

respectively, andW2(r) = J^W2(s)ds. 

(ii) For the system of equations (3.2) 

LMi =» tr[{ f dV{r)V{r)'}{ f V{r)dV{r)'}} (3.54) 
Jo Jo 
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LMn => tr[{ T d^(r)V(r)'}{ T ir( r)V\r)dr}'^ T ir(r)d(r(r)'}p.55) 
Jo Jo Jo 

SBDHj[ =» tr[f V(r)V(r)'dr) (3.56) 
Jo 

SBDHn =* tr[ f V(r)V(r)'dr] (3.57) 
Jo 

where 

Hr) = Ty,(r) - {/Wi(i)5„(s)'<fa}{ / (3.58) 
Jo Jo 

dV(r) = dW^-if W^S^sYds} 
Jo 

{  f  Sw(s)Sw(s)'dr}~1Qw(rydr, (3.59) 
Jo 

y(r) = W\(r) — {  f  dW1(s)Qw{s)'ds}{ f  Qw(s)Qw(s)'ds}-1Sw(r), (3.60) 
Jo Jo 

Qw( r) = [fl(r)',W2(r)'l', (3.61) 

R(r) = [l,r, • • • ,rp]', (3.62) 

5tt(r) = f  Qw(s)ds. (3.63) 
Jo 

Remarks: 

( ) This theorem shows that the tests based on CCR residuals are free of nuisance 

parameters in the limit. As will be shown in Section 5, this property is not shared by 

OLS residuals; the asymptotic distributions of the tests based on the OLS residuals 

involve nuisance parameters which are difficult to eliminate. 

( ) Now we explain how the asymptotic results in Part (ii) of the above theorem 

also apply to the case where the regressor xt contains time trends as in equation 

(3.4) and is estimated by an auxiliary OLS regression. The OLS regression 

residuals from equation (3.2) are numerically invariant to the presence of time trends 
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in the regressor xt by a standard theory in linear regression. Farther, Ai° Ate? 

for all t. Therefore, the probability limits of the moment estimates required for 

CCR transformations are asymptotically invariant to the presence of time trends in 

Xt. The transformed true residual in the presence of time trends in Xt is written as 

Ut = Ut — — (A — A)(A-1r2)'u)t, where wt — (u£, As°')' and the estimates 

ft, A and f1 are based on wt. Because the OLS estimate A are invariant to the presence 

of time trends, the CCR residuals obtained by projecting {ut} onto the orthogonal 

complement of the space spanned by {c*, it} are numerically equivalent to the CCR 

residuals obtained by projecting ut = "t — ^12^22* As? — (A — A)(A-1r2)M>t onto the 

same space. This implies that the asymptotic results we have obtained under the 

assumption that xt does not contain time trends also hold true when xt contains time 

trends as in equation (3.4). But note that the tests statistics using Az° and those 

using Az° are not numerically equivalent because the moment estimates for the CCR 

transformations are different in the two cases, though they converge in probability to 

the same limits and, therefore, do not affect asymptotic distributions of the tests. 

(c) When n = 1 (the case of a single equation), the asymptotic distributions of SBDH 

and SBDHn reduce to those in Shin (1993). In this sense, the tests generated within 

our framework include Shin's (1993) tests as special cases. 

(d) It appears difficult to obtain analytic forms of the pdf's and cdf's of the limiting 

distributions in this theorem. Hence, we tabulated the percentiles of these distribution 

by using simulation. The number of iterations was set at 50,000, and normal numbers 

were generated by using the GAUSS procedure RNDN. The percentiles are reported 
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in Table 5-15 for model (3.1) and for model (3.2) up to p = 1. 

The tests proposed in this section are consistent as shown in the next theorem. 

Theorem 2. Under the alternative hypothesis (3.8), we have: 

(i) For the system of equations (3.1), 

LMi = Op{T2^-\ LMn = 0p(T1-*), SBDH = Op{Tx~s). (3.64) 

(ii) For the system of equations (3.2), 

LMi = Op{T2{-x-\LMn = O^T^SBDH! = Op{Tl~s),SBDHn = Op{Tx~s), 

(3.65) 

where 0 < 6 < |. 

Remarks: 

( ) In light of these results, we reject the null when the computed values of the tests 

axe greater than the corresponding critical values. 

( ) These results show that the rate of divergence depends on the divergence rate 

of lag truncation number. It is expected that the finite sample power of the tests is 

higher when the lag truncation number grows slower. However, such automatic lag 

selection methods as Andrews (1991) and Andrews and Monahan (1992) let the lag 

estimator (I) grow at the rate of Op(T), which make the tests inconsistent (see Choi 

(1992b) for detailed discussions on this issue). One way of avoiding this problem is 

to use the automatic lag selection methods with a restriction. That is, we estimate 

the lag truncation number by one of the automatic selection methods, but we let 

1 = c (constant) if / > Te where | < e < 1. Because 1 = Op(Ts) (0 < 6 < |) under 

the null, this restriction does not affect the lag length estimation under the null at 
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least asymptotically. However, asymptotically, the lag length will be chosen a finite 

constant under the alternative because 1 = Op(T). This implies that the tests diverge 

at faster rates under the alternative (i.e., 6 = 0) with this restriction. The tests using 

this restricted lag selection method perform well in finite samples as will be shown in 

Section 6. 

(c) Using the same arguments as in Remark (ii) following Theorem 1, it is straightfor­

ward to show that Part (ii) of this theorem holds true for the case where the regressor 

xt contains time trends and Ax° is estimated by an auxiliary OLS regression. 

3.5 Tests Based on Other Estimation Methods 

The tests we have proposed are formulated by using CCR residuals. In this section, 

however, we will show that other efficient estimation methods also yield tests for 

the null of cointegration which are free of nuisance parameters in the limit. Using 

the dynamic OLS methods (cf. Stock and Watson (1993) and Saikkonen (1991)) to 

formulate tests for the null of cointegration in a single equation is studied in Shin 

(1993). Therefore, we will consider only Phillips and Hansen's FM-OLS methods 

which are similar to the CCR methods in the sense that preliminary OLS results are 

used to obtain efficient estimates. We will focus on model (3.1) only in this section, 

because extending our discussions to model (3.2) is a straightforward exercise. 

The FM-OLS estimator for model (3.1) is defined as follows: 

T T 
AFM = (£ vtA - Tkt2)(£, (3.66) 

t=1 t=l 

I A A -

where yj — yt — ^12^22 Ax<. The asymptotic distribution of the FM-OLS estimator 
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is given in Phillips and Hansen (1990) as 

T(AFM — A) =>{ P dB1.2(r)B2(r)'}{ f B2(r)B2(r)'dr}~\ (3.67) 
Jo Jo 

which is the same as the asymptotic distribution of the CCR estimator. Now we may 

use the residuals 

"t" = YT — A-FM^T = ut — FLL2^22 &XT — (AFM — A)xt (3.68) 

in order to formulate the LM and SBDH tests. Because T(AFM~A) and T(A* — A) 

have the same asymptotic distribution, it is easy to verify that the LM and SBDH 

tests based on FM-OLS residuals share the same limiting distributions with those 

based on CCR residuals. Therefore, the percentiles in Table 3.1-3.3 can also be used 

for the cointegration tests based on FM-OLS residuals. This analysis shows that it is 

possible to formulate the nuisance-parameter-free tests for the null of cointegration 

by using FM-OLS residuals and provides an answer to the problem raised in Tanaka 

(1993, p. 54). 

However, unlike the case of testing the null of non-cointegration (cf. Engle and 

Granger (1987), Phillips and Ouliaris (1988, 1990), Choi (1992d)), it seems difficult 

to eliminate the nuisance parameters in the limit if we use OLS residuals for the LM 

and SBDH tests. We will illustrate this for model (3.1). The OLS residuals from 

equation (3.1) can be written as 

ut = yt~ Axt = ut- (A — A)xt (3.69) 

and its partial sum as 

St = St — {A — A)S•, (3.70) 
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where 5" = ]T);=i u» an<* &t = Xw=ix*- Therefore, it follows that 

T T 
T-1 S,-iAS; = T-'£{St_l-(A-A)S?_l}{ul-(A-A)x,} 

1=2 1=2 

=» [ {Bl{r)-<xB2{r)}{dB1{r)-aB2(r)Y + Eu (3.71) 
Jo 

and that 

r r 

1=1 1=1 

=> J {Bx(r) - a52(r)}{5!(r) - a£2(r)}'<fr, (3.72) 

where a. = {J0
X J52(r)c?JBi(r), + r2i}{/01 J52(r)B2(r)'}-1. These results show that elim­

inating nuisance parameters is not easy unless Xt is strictly exogenous. We can also 

make the same argument for model (3.2) by extending these results. 

3.6 Finite Sample Power 

In this section, we investigate the finite sample performance of the tests we have 

studied by using simulation. In particular, we will compare the testing strategy of 

applying univariate cointegration tests several times to each equation of the possibly 

cointegrated system with that of applying the multivariate tests once to the system 

of equations. 

Unknown parameters in designing experiments are H, A, xo, Uo, {C,}, n, 

m, sample size T and the lag truncation number I. Also, the tests depend on the 

spectral window &(•), for which we chose the quadratic spectral window following 

suggestions in Andrews (1991). By a standard theory in linear regression, the tests 
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are invariant to H and A. When a constant term is included in regressions, the tests 

are also invariant to xo- However, the tests depend on xo, when the constant term is 

excluded. The initial variable uo affects the tests under the null. When every element 

of Ut is 1(1) under the alternative, the tests are invariant to u0. But when at least 

one element of ut is 7(0), UQ affects the tests. We will set u0 = 0 and xo = 0 in 

*11 ^12 the following experiments. Further, partitioning "11 "." , we find by a 
W21 V22 

standard theory in linear regression that the residuals are invariant to \Pn and so are 

the tests. Additionally, \P22 does not affect the values of the tests, because the tests 

are invariant to nonsingular linear transformations. But the tests depend on ^i2. We 
1.5 0.3 0.2 0.1 ~ 
0.3 1.0 0.4 0.1 
0.2 0.4 2.0 0.1 
0.1 0.1 0.1 1.1 

The lag truncation number will be chosen automatically by using Andrews' (1991) 

set = , so that xt and ut are contemporaneously correlated. 

methods with VAR(4) approximations. But we put a restriction that / = 2 if Z > 

Te. This restriction makes the tests consistent as explained in Remark (ii) following 

Theorem 2. We chose e = 0.70 for model (3.1), e = 0.65 for model (3.2) with an 

intercept and e = 0.60 for model (3.2) with an intercept and a linear time trend. For 

the following simulation results, we changed parameters {C,} and the sample size T 

for n = m = 2 (two equations with two regressors) in order to study the finite sample 

size and power of the tests. 

Empirical power and size were calculated out of 5,000 iterations at T = 100, 200, 

400 by using the critical values reported in Table 5-15. We set the significance level 

at 0.05 for univariate tests. When the univariate tests are used, the null hypothesis 

is rejected when the null of cointegration is rejected for either of the two equations. 
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Therefore, the nominal frequency of rejection for the univariate tests applied to the 

two equations is 1 — 0.952 ~ 0.1. Accordingly, we set the significance level for the 

multivariate tests at 0.10 for meaningful comparisons. 

In Table 16, we report the empirical size of the univariate and multivariate tests. 

Data were generated by 

= iidN( 0,tf). (3.73) 

Note that each component of ut is 1(0) , so that the system is cointegrated. Further, 

each component of ut is serially and contemporaneously correlated. We report the 

size of the tests for the cointegrated system without time trends (model (3.1)) in Part 

(a), for the cointegrated system with an intercept (model (3.2) with p = 0) in Part 

(b) and for the cointegrated system with an intercept term and a linear time trend 

(model (3.2) with p = 1) in Part (c). In Part (a), we find that the multivariate tests 

tend to show size distortions even at T = 400. Specifically, the LMj and SBDH tests 

reject too often and the LMn test rejects too infrequently as compared to the nominal 

size 0.10. The univariate tests also show serious size distortions except the LMj test. 

The empirical size of the LMi tests is close to 0.10 at T = 200, 400. Overall, it is 

found that the multivariate tests reject more often than their univariate counterparts 

and the univariate LMi test outperforms the rest. In Part (6), the multivariate 

tests are shown to have less size distortion as compared to Part (a) except SBDHn. 

Notably, the empirical sizes of LMi and SBDHi are reasonably close to 0.10 at T = 

200, 400. But the empirical size of the SBDHn test is greater than 0.20 at each 

sample size. The univariate LMj and LMn tests reject too infrequently. As a matter 

ut = 0.8 
0.2 

0.0 
0.8 

Ut-i + eii, Xt = Xt-i + e21, &t — 
ei t 
621 
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of fact, the empirical size is close to zero for these tests for all the sample sizes we 

considered. The univariate SDBHi test keeps the nominal size well, but the SBDHn 

test shows serious size distortions. Comparing the univariate and multivariate tests, 

the multivariate LMi test performs better than its univariate counterpart, but the 

univariate SBDHi test outperforms its multivariate counterpart. The univariate and 

multivariate LMn tests show similar finite sample properties. In Part (c), we have 

observations similar to those for Part (6). As in Part (6), the univariate SBDHi and 

multivariate LMi tests keep the nominal size relatively well. 

In Table 17, we report the empirical power of the univariate and multivariate tests 

for the data generated by 

ut = 1.0 0.0 
0.2 0.8 Ut-1 + t, Xt — Xt-1 + &2ti Ct = 

ei t 
621 

= iidN( 0,W). (3.74) 

Because each element of ut is 7(1), the whole system is not cointegrated. In Part 

(a), the multivariate tests are shown to have higher power than the univariate tests, 

but this is well expected from the size properties of these tests. In Part (6), the 

multivariate LMi test, which has stable size as shown in Table 16, is much more 

powerful than its univariate counterpart. But in the case of the SBDHi tests, the 

univariate tests is more powerful than its multivariate counterpart. In addition, the 

LMn test is shown to have low power. In Part (c), we have results similar to those in 

Part (6). Once again, the multivariate LMi and univariate SBDHi tests outperform 

their corresponding counterparts, and LMn test has low power. 
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In Table 18, we consider the data generating process 

ut = 1.0 0.2 
0.0 0.8 "t-i + eit, Xt — Xt-i + e21, et = 

eit = iidiV(0,^). (3.75) 

where = /(l) and ttj2^ = 7(0). As before, each element of ut is both serially and 

contemporaneously correlated. In Part (a), we find that the multivariate tests reject 

more often than their univariate counterparts except SBDH at T = 200, 400. Also, 

the power is almost the same as that for Part (a) in Table 17. This implies that the 

number of unit roots in ut does not have much impact on the finite sample power of 

the tests. In Parts (6) and (c), we find that the power properties are almost similar to 

those we observed in Table 17. That is, the multivariate LMi and univariate SBDHi 

tests outperform their corresponding counterparts, and LMn test has low power. 

To sum up our findings, 

(i) The multivariate LMi test shows more stable size and is more powerful than its 

univariate counterpart for models with time trends. 

(ii) Both the univariate and multivariate LMn tests show low power. 

(iii) The univariate SBDHi test showd more stable size and is more owerful than its 

multivariate counterpart. 

However, it needs to be borne in mind that our simulation results depend on the 

specific experimental format we chose. Therefore, the findings we have obtained are at 

best tentative and we may need more experiments with different experimental formats 

to fully characterize the finite sample performance of the tests we have proposed. 
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3.7 Summary and Further Remarks 

We have proposed various tests for the null of cointegration that can be applied to 

a system of equations as well as to a single equation. The tests use CCR residuals 

to eliminate the nuisance parameters in the limit. The asymptotic distributions of 

these tests were derived and it was shown that the tests are consistent. Further, we 

considered the tests based on FM-OLS and OLS residuals. It was shown that we may 

use FM-OLS residuals instead of CCR residuals without bringing any changes to the 

asymptotic distributions of the tests. But using OLS residuals was shown to cause 

difficulties. Simulation was performed to evaluate the finite sample performance of 

the tests. The multivariate LMj and univariate SBDHi tests were shown to work 

reasonably well in finite samples according to our experimental format. 
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CHAPTER IV 

Testing the Null of Stationarity with Structural 
Break for Multiple Time Series 

4.1 Introduction 

Since the analysis of Nelson and Plosser (1982), a great deal of research has been 

devoted to the unit root hypothesis. Most conventional approaches specify the null 

to be nonstationary against the alternative of stationarity. However, as suggested 

by Kwiatkowski, Phillips, Schmidt and Shin (1992, hereafter KPSS), a unit root test 

should at least be accompanied by stationarity tests for confirmatory data analy­

sis. According to KPSS (1992), many series that have been claimed originally to be 

7(1) appear to be stationary or inconclusive under stationarity testing. A few test 

procedures axe available for testing the null of stationarity against the alternative of 

nonstationarity; Park and Choi (1988), Park (1990), Bierens (1991), Herce (1991), 

Dejong, Nankervis, Savin and Whiteman (1992), Saikkonen and Luukkonen (1989), 

KPSS (1992), Tanaka (1990), Khan and Ogaki (1992), Stock (1992) and Choi (1992). 

Choi and Yu (1993) provide a general framework in which many of the tests for I(k) 

against I(m + k) are generated, and Chapter II of this dissertation developed tests 

for the null of stationarity for multiple time series. 

Another challenging approach against the integrated hypothesis is the structural 

58 
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break hypothesis. Perron (1989) raises this possibility, and suggests that the null 

hypothesis of unit root be tested against the alternative of stationarity around bro­

ken trend. His findings suggest that most of the economic time series appear to be 

stationary when there is one time crash and the null of a unit-root is rejected for 

many of the series. Recently, however, Perron (1989) has been criticized for assum­

ing that the structural break points are known, and recent researches by Banerjee, 

Lumsdaine and Stock (1992), Perron and Vogelsang (1992), Christiano (1992), Zivot 

and Andrew (1992), to name a few, replace the exogenous breaks with endogenous 

breaks. Christiano (1992) used the bootstrap method to search for a possible break 

point in U.S. GNP series and tested whether structural breaks result in spurious be­

havior of time series. His findings are different from those of Perron (1989). Zivot 

and Andrew (1992) allow for an unknown structural break and test the unit-root 

hypothesis against stationarity. They find that there is less evidence against the 

unit-root hypothesis than in Perron (1989). Amsler and Lee (1994) extends unit-root 

test suggested in Schimidt and Phillips (1992) to test the null of unit root against the 

alternative of stationarity with structural change. 

So far, most tests for structural break are designed to distinguish the null of 

nonstationarity against the alternative of stationarity around the mean or trend with 

structural breaks. There is, however, no procedure available for testing the null 

of stationarity with a structural break against the alternative of nonstationarity in 

univariate as well as multiple time series. This is because it is impossible to test 

the null of structural break against the alternative of parameter constancy. OLS 
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estimators under the structural breaks are consistent even when there is no structural 

break. Hence, test statistics based on the model with a structural break fail to diverge 

under the alternative as T —> oo. In this chapter, we suggest test statistics allowing 

a structural break under the null of stationarity which diverge under the alternative 

of nonstationarity. 

We can derive some important benefits by testing the null of stationarity with a 

structural break against nonstationarity. First, we can use the tests for confirmatory 

data analysis and avoid possible misinterpretation of conventional unit test results. 

When both tests result in the same conclusion, we can infer the statistical properties 

with greater confidence. If the tests disagree, we may conclude that the data is not 

informative along the line of KPSS (1992). Second, stationarity tests avoid the point 

null hypothesis so that rejecting the null hypothesis can be thought of as evidence in 

favor of nonstationarity. Thirdly, we may be able to distinguish a stationary series 

with broken trend from a nonstationary series. 

The purpose of this chapter is to introduce tests for the null of stationarity with 

multiple structural breaks at possibly unknown break points. The tests are designed 

to handle univariate series as well as multivariate time series. To allow for unknown 

break points, we take the supremum of the test statistics along the line of Zivot and 

Andrew (1992). Our test statistics are variants of the tests for the null of stationarity 

and the null of cointegration suggested in Chapter II and III. All limiting distributions 

are represented by the product of a multivariate Brownian bridge with structural 

break parameter, A. We also report simulation results that study the finite sample 
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performance of the tests. In addition, we will compare the strategy of applying the 

univariate tests many times and that of using the multivariate tests in finite samples. 

This chapter is organized as follows. Section 2 introduces the model and hypothe­

ses. Section 3 considers the effect of structural break on stationarity tests studied in 

Chapter II. Section 4 derives the limiting distribution of our tests for general time 

series with known structural break points. Section 5 considers examples. Section 6 

extends the tests in Section 4 to the case of unknown break points. Section 7 reports 

simulation results. Section 8 concludes with a summary and further remarks. All 

proofs are in the Appendix C. 

A few words of notation: All the limits are taken as "T —> oo" unless otherwise 

specified. Weak convergence is denoted as " Additionally, "A" signifies the usual 

difference operator. The standard n-vector Brownian motion is written as "W(r)" 

and "fvv(-)" denotes the spectral density matrix for {vt}. The indicator function is 

represented by "t". Lastly, "A^" denotes the (i,j) — th elements of the matrix A. 

4.2 The Models, Hypotheses and Assumptions 

We consider the system of equations 

yt = Act + xt, (4.1) 

where yt represents an n x 1 vector time series, c* represents a (p + 1) x 1 vector 

of time polynomials and A represents an n X (p -J- 1) parameter matrix, respectively. 

Specifically, c* = [1, t, • • • ,ip]', with a suitable weight matrix ST, ^cpv] —* c(r) in 

D[0,1]. Obviously, cd is nonsingular and positive definite (see Park (1990,1992)). 
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In this case, ST = diag[ 1, T, • • •, Tp] and c = [1, r, • • •, rp]'. Also, we can transform 

equation (4.1) as in Chapter II and III and in Choi and Yu (1993). After summing 

up equation (4.1), we have following equation: 

Pt = Agt + Su (4.2) 

where Pt = £$=i yj, gt = Y?j=i ci> and St = EJ=I ®j-

Our main interest is in testing whether the time series xt is stationary when there 

exist multiple structural breaks. Specifically, we are interested in testing the null 

hypothesis 

HQ : xt = 1(0) with structural breaks. (4.3) 

against the alternative. 

Hi : = /(&,•), ki > 1 for some i. (4.4) 

The null hypothesis (4.3) is equivalent to that every series in the system of equa­

tions given by equation (4.1) is stationary, possibly around time trend of proper order 

with structural breaks. Under the alternative, we allow each element of xt to have a 

different order of integration but require that at least one element be nonstationary. 

Letting wt = xt, we assume under the null that wt satisfies the assumptions A1-A9 

in chapter II. 

A stationary and invertible vector ARMA process is a special case of {u>t}. Under 

Al, A2, A4, A5 and A6, we have, as in Phillips and Solo (1992, p. 985), 

pv] 

T-"2 £>«=!•£(.•), (4.5) 
t=1 
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where B(r) is a Brownian motion with covariance matrix Ct and [a;] denotes the integer 

part of x. Also, extending Hannan and Heyde's (1972) results, we have under Al, 

A4, A5 and an assumption implied by A2 that 

T 

A S, (4.6) 
t=i 

where S = E(wtw't) = YALO A3 is required to ensure that the limiting 

distribution of the partial sum process in (4.5) is non-degenerate and to ensure that 

{iwt} does not have an MA unit root. A7 implies that E;=iw* n°t cointegrated 

under the null hypothesis. 

4.3 Test Statistics and the Effect of Structural Breaks 

By defining an appropriate set of parameters A and regressors c* of equation (4.1), 

the null hypothesis under structural breaks could be formulated. The test statistics 

we are going to consider are those studied in Chapter II and III, which are given 

below: 

T T 

LM, = TRUT-1 J2 a SJU - fiijnr'tr-1 s<-iAs; - ftx)«rl}» (4.7) 
t=2 1=2 

T T T 
LMn = <r{(£ AS.-iAS', - TCljilj-1}, (4.8) 

t=2 t=2 t=2 
T 

SBDHT = tr{(T-2 53 StSD&T1}, (4.9) 
t=i 

and 

SBDH„ = tr{(T~2 £ 5,5;)^'}, (4.10) 
t=l 
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where the bar (—) denotes residuals obtained from equation (4.1) and the tilde (~) 

from equation (4.2). To understand the impact of a structural break on the stationar­

ity tests, consider the null of stationarity against nonstationarity studied in Chapter 

II. Suppose there is a one time pure structural break at TB = TX for A € (0,1) 

following Andrew (1992). Then, the equation (4.1) should be modified as below. 

IIt — A\Ct + xt, t = 1, • • • ,TX, (4-11) 

Vt = AiCt + xt, t = TX + 1, • • • ,T, (4-12) 

where A 6 (0,1) denotes the break point, and A\ ^ Ai. Let ii = 1 if t < TX or 

0 otherwise and 12 = 1 if t > TX or 0 otherwise. The vector of indicator functions 

is denoted by t = [ii, 12]'. Equation (4.12) can then be written using the indicator 

functions as below. 

yt = A\Cti\ + AiCtL2 + xt, 

= Adt + Xt, (^-13) 

where dt = [ticj, i2c't]' = t <g> Cf and A = [Ai A2]. This specification is very simple 

but useful for our purposes. Further, it is easy to formulate various structural breaks 

by defining the parameter matrix A and the regressors dt given the structural break 

point. Test statistics suggested in this chapter are obtained from equation (4.13) 

though there are possible alternative expressions. Clearly, (4.1) is misspecified under 

the null hypothesis of stationarity with structural breaks, and we expect that the 

omitted deterministic component would be big enough to cause the estimated residu­

als nonstationary hence cause the test statistics diverge. The following theorem states 
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the effect of a one time structural break on the tests for stationarity. 

Theorem 1. Suppose that assumptions A1 - A9 hold and that the time polynomial of 

order p in the regression equation is correctly specified. Then under the null hypothesis 

with a one time structural break, 

where 0 < 8 < |. 

Remarks: 

( ) These results indicate that if there exists a structural break we always reject 

the null of stationarity asymptotically even when xt is 1(0). Therefore, rejecting 

the null of stationarity does not automatically imply acceptance of the alternative of 

nonstationarity; it could be an indication of structural break instead. 

( ) The results are consistent with Perron (1989) in the sense that a one time struc­

tural break could make stationary time series behave as if it were a nonstationary 

series. 

(c) The rates of divergence of the test statistics are the same as those under the 

alternative of nonstationarity. 

(d) These divergent results are also expected in case of other stationarity tests. The 

effects are exactly the opposite when conventional unit root tests such as ADF and 

Za are considered. That is, these unit root tests become inconsistent when a series 

(i) LM, = Op(tW~% 

(ii) LUu = 

(iii)SBDH, = Or(Tl~s), 

(iiv)SBDH„ = Op(T>~'), 

(4.14) 

(4.15) 

(4.16) 

(4.17) 
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contains a broken trend. 

4.4 Model with Known Structural Break Points 

In this section, we will demonstrate how we can effectively allow for various structural 

breaks and focus on the stationarity of the series we want to assess. 

4.4.1 Model with a one time structural break 

Suppose there is one time structural break at the point T B = T X .  The model is given 

by equation (4.13) 

yt = Adt + xt. (4.18) 

In what follows, we will consider three types of structural breaks: a pure structural 

break, a partial structural break and a continuous broken trend. All of these types 

of structural breaks could be allowed in equation (4.13). 

Case 1: Pure structural break 

A pure structural break is defined as the case in which all coefficients of the equation 

c h a n g e  t h e i r  v a l u e  a t  T X .  T h e  p a r a m e t e r  m a t r i x  A  i s  n  x  k .  T h e n ,  w e  s e t  d t  =  

with dimension k  = 2 x (p+1). Obviously, ( h ®  8 ^ l ) d ^ r r ]  —• / = (i® c). The limiting 

distribution of the OLS estimator is given by 

^"(A - A)(H 0 ST) >*• [ iBJX f //')"' = N(0, SJ ® ( /* ff)-1). (4.19) 
Jo Jo Jo 

Note that f f  =  / Q( U'  ®  c d )  =  d i a g [ f *  c d t , i ,  / „  c d L 2 ]  =  d i a g [ f ^  c d ,  f t  c d \ ,  which 

is nonsingular. 
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Case 2: Partial structural break 

A partial structural break is defined as the case in which some of the coefficients of 

the equation change their values at TX. The n x k parameter matrix A = [A1A2A3]. 

Rearrange c* = [cit, C2t]' such that the coefficients of C2t(m x 1) change their values 

but those of cit do not change their values. Then, we set dt = [dXi, c^ti, c^]' with 

dimension k = p + 1 + m. Letting SIT and S2T be appropriate weight matrices such 

that S^Ci[Tr] —*• ci(r), £j"rc2pv] —> c2(r) so that diag[S^, 

(c^, c^ii, . The limiting distribution of the OLS estimator is given by equation 
Ci4 CiC^ti cx4i2 " 

C2Cjii CiCjil 0 
C2C^i2 0 C2C^A2 

(4.19) with J,,1 f f  =  / o  

Case 3: Structural break with continuous restriction 

To formulate continuity with a structural break, there must be at least two coefficients 

that change their values. With one time structural break, the continuity restriction 

reduces the number of parameters to be estimated by one as compared to case 1 

and 2. We can easily modify the equation to guarantee continuity. Without loss of 

generality, assume a partial structural break at X for C2t. Then the restriction becomes 

AICITB + A2C2TB = AICITB + A3C2TB which implies that A2C2TB — A$C2TB = 0. Since 

A2 ^ A3, we can solve the restriction for one coefficient. We solve the restriction for 

the first column of A2 to obtain 

A2 ^C2TB — ~A.2QZTB "t" AZC2TB , (4.20) 

where A2 is the nx(m-l) matrix created by deleting A \̂ the first column of A2, 

from A2 and is (m — 1) x 1 vector of constants created by deleting the first 
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element of C2t, from c2t. Using the restriction given by equation (4.20), we express 

equation (4.1) as 

IIt — AiCu + A2C2t + Xt 

= A\C\t + &Q,&lt "i" I*4TB ~~ Î TB 

= AlCit + A2(c2t — QiTs^tt /^Tb) -^3C2TB^t /^Tb xt for ^ 

yt = AiCu + A3C2t + Xt for t > TX. (4.21) 

The regression equation becomes 

yt - AICU + A2(c2T - CJJB
(£T/CRRB)L'I + ̂ {^2 + C2RB

C2T)/^R^I) + XT 

= Adt -J- Xt (4.22) 

where dt = [dlt, ti(cat - SxrBdu/<§rg)', i2c^t + Note ttat A is nxk 

with k = p + m which is reduced in dimension by 1 compare to case 2. Also, the 

limiting distribution of the OLS estimator is invariant to the value of A. 

In what follows, we will derive the limiting distributions of the test statistics. 

When there is an intercept in the model, we can not use the estimated residuals for 

Z/Mj and LMn since ST = 0 and £f=2 A&&-1 = §(STS^ - £f=1 AStAS't) which 

is degenerate. In such a case, we formulate the following regression equation by 

summing up the equation (4.13) over t as in Chapter II and III and in Choi and Yu 

(1993). 

S* = Aht + Su (4.23) 

where ht = Ei=i dt and S% = Ei=i V*' Denoting the residuals Axt and St from 

equations (4.13) and (4.23), respectively, the following test statistics will be considered 
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in this chapter. 

T T 
LMj = tr{T~x ]T AStS^ - £3 &-iA§ - fti)^1} (4.24) 

t=2 1=2 

T T T 

LM„ = TR{(Y, AS.S;_i - ra;)(£ iiAS; - ra,)n,"1} (4.2s) 
1=2 1=2 1=2 

T 
SBDHT = <r{(r~2 53 (4.26) 

1=1 
T 

SBDHN = tr{(T~2 ]T STSJ)^"1}. (4-27) 
1=1 

where 

ft, = C(h)k(h/l), (4.28) 
h=-i 

T—h 
C(H) = (4.29) 

1=2 

I 
ft, = J] C(h)k(h/l), (4.30) 

h=-i 
T~h 

C(h) = I^A5,S;+1, (4.31) 
1=2 

The limiting distributions for the test statistics are presented in the following 

theorem. 

Theorem 2. Suppose assumptions A1 - A9 hold, (a) Under the null hypothesis with 

one time structural break at known point TB = AT, A 6 (0,1), 

(z) XAf/ =* *r{ f1 dW{r)W{r)' f  W(r)dW(r)'}, (4.32) 
Jo Jo 

(ii) LMn =* tr[ C dW(r)W(r)'{ C W(r)#(r)'}"1 f W{r)dW{r)% (4.33) 
Jo Jo Jo 
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(Hi) SBDHj => tr{ C W(r)W(r)'}, (4.34) 
Jo 

(iv) SBDHn =* tr{ /* TT(r)T^(r)'}, (4.35) 
Jo 

where 

W"(r) = W{r)-$h, 

W(r) = W(r)-$h, 

and ift and tp minimize in L2 norm, 

fl || W(r) - f A||2, 
Jo 

[ ||<nF(r) - $/n!, 
Jo 

and h(r) = J* d(s)ds. 

(b) Under the alternative hypothesis, 

(i)^Mj 

(ii)LMn 

{ifySBDlh 

(iv)SBDHn 

where 0 < 6 < |. 

OpfT1"4), 

0,( T1-'), 

O^T1"5), 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

Remarks: 

(a) The test statistics will not diverge when xt is stationary without a structural 
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break. These tests are consistent even without a structural break under the alternative 

and have power against nonstationarity only. This is because consistently estimated 

residuals are used to construct the test statistics when there is no structural break. 

( b )  Prom Theorem 1, it is obvious that the test statistics diverge when there is more 

than one structural break. However, it is straightforward to extend our formulation 

to multiple structural breaks using additional indicator functions. 

(c) When there is no structural break, the above theorem is still valid because the 

parameter estimates as well as the residuals are consistent. They do not have power 

against no structural break. Therefore, in connection with (6), allowing for more 

structural breaks is asymptotically safe but it may affect the power performance 

because of efficiency losses due to the increased number of parameters to be estimated. 

( d )  For the case of no structural break ( d t  =  C t ), the asymptotic distributions and the 

finite sample performances of these statistics are reported in Chapter II. 

4.4.2 Model with multiple structural breaks 

Consider the case with multiple structural breaks at A = (Ai, • • *, Aff), A,- € (0,1), 

i = 1, • • -, <jr, for an n-vector time series yt. Extending model (4.13) to the general 

case, we consider the following regression equation. Without loss of generality, assume 

partial structural breaks. The model is thus given by 

Vt = A\C\t + BlC2tLl + • • • + BqC2ttq + Bq+lC2tlq+l + «t, (4.44) 

where i j  = 1 if T Aj_i <  t  <  T X j ,  0 otherwise. L\ = 1 if t  < T X \  and 0 otherwise, 

ig+i = 1 if TXq < t < T. Again, letting dt = [dlt, t,\c£t, • • •, iqcf2t, tg+ic£t]\ we have 
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the same equation as (4.13). Equation (4.44) also allows q breaks. Hence, the lim­

iting distributions for the OLS estimators is given by the equation (4.19) with the 

proper replacement of / and h. Note that we can also consider the various cases 

discussed earlier. Note that the deterministic components satisfy S^dpr] —•• /(r) = 

[cj, ti4, • • •, iqd}, i9+i<4]' and ff > 0, we have the following theorem. 

Theorem 3. Suppose that assumptions Al - A9 hold. Then the results of Theorem 

2 hold under multiple structural breaks with proper replacement of f and h. 

4.5 Examples and Feasible Models 

In this section, we will consider several models with structural breaks that are feasible 

in applied econometrics. Suppose that there is a one time structural break which could 

be either a partial structural break or a pure structural break as in Andrews (1992). 

Without loss of generality, we assume a partial structural break. We will consider 

models restricted to be continuous at the time of the structural break and models 

without such a restriction. The models are: 

M( 1) : 

Vt = aot° + flii1 + • • • + ak-itk 1 + a\tk + • • • + a\tl + • • • + aptp + xt for t < TB, (4.45) 

yt = a0t° + ait1 -J- • • • + cik-it* 1 + a^tk + • • • + a^t* + ••*-!- aptp + xt for t > TB. (4.46) 

M(2) : M( 1) + continuous at TB. 

Note that £  —  k  + 1 parameters for c2* = [ t k ,  •  •  • ,  t 1 } '  change their values at TX. Define 

indicator functions and such that ii(t) = 1 for t < TB (or r < X) and (t) = 1 
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for t > T s  (or. r > A), respectively. Then the time polynomial is given by 

d t  =  [ 1 5  *  * ' » •  •  •  >  t t + 1 ,  •  •  • ,  t p ] '  ( 4 . 4 7 )  

and 

dt — [1> *' * i tk, tk(tL\ + 2st2),tk(t — Tb)l2, • • •,+ Tg *A2)) 

t^tt-k _Tl~k)l2 (4.48) 

for M(l) and M(2), respectively. Hence, under the null, it is possible to interpret 

equation (4.13) as a stationary time series with a structural break. Clearly, the 

I — k + p + 2 ov£ — k + p+1 dimensional vector sequences of deterministic trend 

variables dt satisfies 6?1 dpr] —* f(r) in D[0,1] with a suitable weight matrix. In 

particular, f(r) is given by / = [1, r,- • •, rkii, rfct2)- • •, r£ii,reC2, te+1, • • •, rp]' and 

[l,ry • •, rk, rk(rti + Ai2), rk(r — A)i2, • • •, rk(re~kii + A'~*t2), rk(re~k - A'~*)i2, <<+1, 

• • •, rp]' for M( 1) and M(2), respectively. The weight matrices are diag[l, T, • • •, Tk, 

Tk, Tl, Te, Te+1,-",Tp] and diag[ 1, T, •••, Tk, Tk+1, Tk+1, •••, 2*, T', T<+1, 

•  •  • ,  T p ]  for M(l) and M ( 2), respectively. 

Those models studied by Perron (1989) and many others are special cases of M ( l )  

and M(2) with p = 0 or 1. In particular, we have the following models: 

Model 1. pure level shift (p = 0) 

dt = [«l(*),42(*)]', 

f(r) = [ti,i2]' 

(4.49) 

(4.50) 

Model 2. partial level shift (p = 1) 

dt = M0»*2(0>*]'i (4.51) 
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f ( r )  = [ti,i2,r]' (4.52) 

Model 3. pure level/trend shift under a continuity restriction (p = 1) 

dt = [1 (4.53) 

f ( r )  = [ l , r - ( r -A)* 2 , ( r -A)t 2 ] '  (4 .54)  

Model 4. pure level/trend shift without restriction (p = 1) 

dt = [*x(0»*2(0»M0.M*)]/» (4.55) 

f i r )  = h^2,r4i,ri2]' (4.56) 

The limiting distributions of the test statistics for the null of stationarity with a 

one time structural break are reported in the following lemma. 

Lemma 4. Suppose that assumptions A1 - A9 hold. The results in Theorem 2 hold 

with 

h ( r )  =  [ ^ ' y ' • • • ' p f e ^ ( ^ f c + l i l  +  A A + 1 ^ 2 ) ' f c T I ( ^ f c + 1 - A f c + 1 K • • • '  

j^n(re+\ + Amt2), ̂ Y(/+1 - A*1)*, • • •, ̂ ]' (4.57) 

for M( 1), 

m /t+1 M \ 1 
h ( r )  =  + 1 ( F r 2  ~  f c + l )  ~  A f c + 2 ( j f c  +  2  

~F+T^ i2 '  t r*+ ^ + 2 ~ k + j) ~ Afc+2(rT2 ~ F+T^2' 
r*+l r<-fc \<-A: 1 1 

• • • • 7+T - [ /+1(  JTT - - V+1(  ITT " *+I>K 
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for M{2). 

Remarks: 

( ) These tests are consistent even without a structural break under the alternative 

and have power against nonstationarity only. This is because consistently estimated 

residuals axe used to construct the test statistics when there are no structural breaks. 

( ) Specifically, h ( r )  is given by 

[rti + Ai2> (r — A)^]' for Model 1, 

[rti + Ai2, (r — A)i2, for Model 2, 
£t 

[r, ̂ r2ii + ̂ (r2 — 2Ar + A2)t2, r(r2 — 2Ar + A2)42]' for Model 3, 
Zt £t £* 

[ri\ + Xt2, (r - A)i2, ^r2ii + ̂ A2t2, ^(r2 - A2)i2]' for Model 4. 

(c) From Theorem 1, it is obvious that the test statistics diverge when there is more 

than one structural break. However, it is straightforward to extend our formulation 

to multiple structural breaks using additional indicator functions. 

( d )  The asymptotic critical values are tabulated by simulation in Table 19-26 for A = 

0.25, 0.33, 0.41, 0.49, 0.59, 0.63, for n = 1 and 2, respectively. 

Suppose that there are q structural breaks at Tj = A,-T for A,- € (0,1), i = 1, • • •, q. 

Again, partial and pure structural breaks are allowed. Without loss of generality, 

assume 0 < Ax < • • • < A, < 1. Then, for M(\) and M(2), dt and d can be written 

as follow: 

dt = (4.59) 

f ( r )  = [l>r l--,r fc" l
lr fct1,---,r\,..-,^i,...,f<tg+i,--.,r l+1,r ,T (4.60) 
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and 

dt = [l,V-^*~VM*(%-(<-ri)»72),**((t-Ti)?72-(*-12)773), 

• • •, t\t - Tq)rjq+lt • • •, tk(&k
Vl - (t'-k - Tfk)V2, 

• • •, tk{tl-k - T;-k)Vq+1, t*1, • • •, **]' (4.61) 

/ ( r )  =  [ l , r , - - - , r f c ~ 1 , r f e , r f c ( r7 / i - ( r -A i )? ? 2 ) , r f c ( ( r -A i )7 /2 - ( r -A2 )» 7 3 ) ,  

•  •  • ,  r k ( r  -  X q ) r i g + 1 ,  •  •  • ,  r k ( r e - k i ) X  -  (r<-* - A^"*)^, 

. . . ,  _ A^~ fc)7/g+1,r<+1,  • • •, r*]', (4.62) 

where rji = and i,- is an indicator function such that n = 1 if ITA,_i < t < TA,-

for i  =  1, •  •  • ,  q  +  1, A,- € (0,1), T X 0  = 1 and TAg+i = T .  

These specification allow us to apply stationarity tests for multiple time series 

with a different number of structural breaks for different series when we know the 

maximum number of structural breaks. This is because the parameters and residuals 

were consistently estimated when the number of breaks for each series is less than the 

number specified. Clearly, when fc = 0, £ = p = q = 1} the model reduces to model 

3 or model 4. The asymptotic distributions are obtained straightforwardly, and are 

reported in the following lemma. 

Lemma 5. Under the same conditions in Theorem 3 with multiple structural breaks, 

the results of Theorem 3 hold with proper replacement of f and h. 

4.6 Asymptotic Distribution with Unknown Break Points 

The main criticisms against the results in section 4 and section 5 is that the structural 

break points are assumed to be known. To allow for unknown changing points, we 
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will take the supremum over the range of A in the manner of Zivot and Andrew 

(1992). Define sup Q& by taking the supremum of these test statistics over A in a 

sample of size T. Here, Q& denotes LMi, LMu, SBDHi, and SBDHn, and Qi its 

limiting distribution, for i = 1,2,3, and 4, respectively. The limiting distributions 

are reported in the following theorem. 

Theorem 6. Suppose assumptions Al - A9 hold. 

(a) Under the null hypothesis with q structural breaks at unknown points T; = A»T, 

G  ( 0 , 1 ) ,  i  =  1 , • • • , ? ,  

supQwr^f- sup (Qk), for k = 1,2,3,4. (4.63) 
Ae(o,i) 

(b) Under the alternative hypothesis, 

where 0 < 6 < |. 

Remarks: 

( ) The above asymptotic distribution could be used for a properly demeaned and/or 

detrended series with structural breaks. When there is no structural break, one can 

use the results in Chapter II. 

( ) The simulated percentiles for model 1 to 4 for n = 1, • • •, 5 with q = 1 are reported 

supQkT = Op(T^~% k = 1, 

supQkT = Op{Tx~s), A: = 2,3,4. 

(4.64) 

(4.65) 

in Table 27-30. 

(c) The results are obtained by taking A € (0.15,0.85) with interval 0.02. 
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4.7 Finite Sample Power 

In this section, we investigate the finite sample performance of the tests introduced 

in Sections 6 by using simulation. In particular, we compare the testing strategy of 

applying univariate tests several times to each component of multiple time series with 

that of applying multivariate tests to the series. The finite sample size and power 

of the tests proposed in Sections 6 depend on the sample size T, the lag length I for 

long-run variance estimation, the lag window chosen, and the parameters associated 

with the DGP of {xt} (see Schmidt and Phillips (1992) for related analyses). But 

the finite sample power and size are invariant to S because the tests are invariant 

to nonsingular transformation. Further, the finite sample size depends on the initial 

variable x0. But the finite sample power of the tests is invariant to Xo. In this section, 

however, we have used only the Quadratic spectral lag window and chose XQ = 0 for 

all the experimental results. The univariate and multivariate tests axe expected to 

reject too often under the null as the initial variable takes larger values (cf. Choi 

(1992b)). 

Random numbers for the simulation results were generated by the GAUSS sub­

routine RNDN. Empirical power was calculated out of 2,000 iterations at T = 100, 

200 and 400 by using the critical values reported in Table 27-30. The lag length 

is selected by Andrews' (1991) method with AR(4) and VAR(4) approximations for 

univariate and multivaxiate series, respectively. In order to make the tests consistent, 
A A 

we impose the restriction that I  — 2 if 7 > T c ,  where e = 0.65. 

In Table 31, we report the empirical power of L M j ,  L M n ,  S B D H i  and SBDHn 
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for Model 1 to Model 4. Data were generated as 

xt = 1.0 0.0 
0.2 0.8 

xt-1 + e*, ®o — 0, et ~ iidN(0, ft), ft = 
1.0 0.5 
0.5 1.5 

(4.66) 

Each component of the bivariate time series {a;*} is 7(1) ; {aj^} and are 

serially correlated. Note that the size of all the tests depends on the initial variable XQ 

in finite samples. We investigated finite sample properties in two ways. First, null of 

7(0) for each series at 5% significance level was tested. Second, multivariate tests and 

double application of univariate tests are compared. M signifies the model considered. 

The results for the univariate tests in Part (6) were obtained by calculating the 

fraction of replications for which the null of 7(0) is rejected for at least one series 

at the 5% level. Because the nominal frequency of non-rejection for the bivariate 

series is 0.952 = 0.9025, the numbers for the univariate tests should be compared to 

1 — 0.9025 ~ 0.1 . When the numbers are greater than 0.1, the univariate tests are 

thought to reject too often under the null. For meaningful comparisons, we calculated 

the fraction of replications for which the multivariate tests reject the null at the 10% 

level. In Part (a), the results for the tests on each series are reported. M indicates the 

model used to test the null hypothesis. That is, is assumed to be the time series 

with a structural break corresponding to Model 1 to Model 4 respectively. Consider 

univariate tests of Model 1. SBDHi and SBDHn are the most powerful tests for all 

cases. LMi is powerful at T = 400. LMu is least powerful for all cases. Comparing 

univariate and multivariate tests, univariate SBDHi and SBDHn are slightly more 

powerful than their multivariate counterparts at T = 100 and 200, and are equally 

powerful at T = 400. However, multivariate LMi and LMu are more powerful than 
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their univariate counterparts. Among the multivariate tests, LMu is least powerful. 

However, at T = 400, power increases significantly. 

Across models, our general conclusions are still valid. However, it should be noted 

that the power decreases as we move from Model 1 to Model 4, although at T =400, 

the SBDH tests become equally powerful across different models. In Paxt (6), the 

multivariate tests are less sensitive to the choice of model than are their univariate 

counterparts. 

In Table 32, we report the empirical power of LMi, LMu and SBDH. Data were 

generated as 

xt = 1.0 0.2 
0.0 0.8 

1.0 0.5 
0.5 1.5 

(4.67) xt-i + et, xo = 0, et ~ iidN(0, (2), ft = 

Note that = 7(1), x^ = 7(0) and that {s^} and are serially correlated. 

The finite sample power of all the tests does not depend on the initial variable XQ . In 

Part (a), we report the power and size of the univariate tests for various models. For 

univariate tests are more powerful than those of from the DGP 1. It seems 

that the additional serial correlation of the error contributes to power performance. 

For x\2\ size distortion is observed at T — 100 and 200. At T = 400, SBDHi and 

SBDHu maintain the nominal significance level relatively well. However, LMi and 

LMu do not reject the null frequently enough. 

In Part (6), univariate SBDHi and SBDHu are slightly more powerful than their 

multivariate counterparts. Multivariate LMu is equally as powerful as SBDHi and 

SBDHu at T = 200 and 400. Across models, it is observed that univariate tests 

for become less powerful as we depart from Model 1. For size distortion 
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increases as we deviate from Model 1. Multivariate tests also become less powerful 

as we move away from model 1. However, multivariate tests are less sensitive to the 

choice of models than are their univariate counterparts. 

In Table 33, we report the empirical size of L M j ,  L M u >  S B D H i  and SBDHn 

for the data generated by 

xt = 0.8 0.0 
0.2 0.8 

xt~i + et, XQ = 0, et ~ iidN(0, H), ft = 
1.0 0.5 
0.5 1.5 

(4.68) 

Note that x[2^ = 7(0) and that {a:^} and are serially correlated. 

The finite sample power of all the tests does depend on the initial variable x0 . In 

Part (a), we report the size of the univariate tests. As in Table 32, the univariate 

tests suffer size distortions at T = 100 and T = 200. Both SBDHi and SBDHn 

keep their nominal size at T = 400. Further, it is observed that the size distortion 

increases when an MA component is included. Again, LMi and LMn do not reject 

the null frequently enough. In Part (6), size distortion is observed. The size distortion, 

however, is smaller in multivariate tests than in their univariate counterparts. When 

T = 400, multivariate tests maintain nominal size reasonably well, and SBDHi and 

LMu reject the null slightly less than the 10% level. Across models, size distortion 

is qualitatively the same. However, it disappear, in large samples. 

The univariate tests are shown to reject the null less frequently than their multi­

variate counterparts except in the case of SBDHu. However, both sets of tests show 

serious size distortions at T = 100. At T = 400, though, the multivariate tests have 

empirical size reasonably close to 0.1, except in the case of LMu• Comparing the 

four tests, LMi, SBDHi and SBDHu tend to reject more often than LMn in all 
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cases. The results reported in Part (b ) — ( d )  for Models 2 - 4 are similar to Part (a). 

To summarize our findings (i) multivariate LMu suffers size distortion in a negative 

direction. When T = 200, 400, LMn become significantly powerful. Multivariate 

LMi keep their nominal size at T = 400 and are also powerful, (n) For all models 

considered, the multivariate tests maintain their nominal size well relative to their 

univariate counterparts. (Hi) For all models, all tests suffer from serious size distor­

tions at sample sizes T = 100 and 200. 

4.8 Summary and Further Remarks 

In this chapter, we have introduced tests for the null of stationarity with structural 

breaks against the alternative of nonstationarity. These tests are applicable to univari­

ate as well as multiple time series which are not available currently. The asymptotic 

distributions were obtained in a unified manner by using the standard vector Brown-

ian motion and the test consistency was established. The effects of omitted structural 

breaks were analyzed. Simulation results indicate that the tests we have introduced 

work reasonably well in finite samples and that using the multivariate tests is a better 

testing strategy than applying the univariate tests several times to each component 

of a multiple time series. Among the multivariate tests we introduced, the LMi, 

SBDHi and SBDHu tests show the best performance and are recommended for 

empirical work. 
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CHAPTER V 

Conclusion and Summary 

This dissertation studies various tests for stationarity in the residuals of time series. 

They are (1) stationarity tests, (2) cointegration tests and (3) stationarity tests allow­

ing structural break. Unlike exisiting conventional tests, those tests studied in this 

dissertation use stationarity as the null hypothesis and unit root as an alternative 

hypothesis. Those tests are derived from multivariate AR(1) specification under the 

LM principle. 

Chapter II suggests stationarity tests and investigates the finite sample properties. 

We propose various test statistics for the null of stationarity against the alternative 

of nonstationarity. Tests using the null of stationarity are at least useful as a confir­

matory data analysis tool. The asymptotic distributions were obtained in a unified 

manner by using the standard vector Brownian motion and the test consistency was 

established. The effects of misspecifying the order of time trends were also analyzed. 

In summary, simulation indicates that the tests we have introduced work reason­

ably well in finite samples and that using the multivariate tests is a better testing 

strategy than applying the univariate tests several times to each component of a 

multiple time series. Note that in the case of both of the multivariate tests and uni­

variate tests that we discuss, the null hypothesis and the alternative are the same, 

83 
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namely that all the time series are stationary vs. at least one is non-stationary. The 

simulation results show that: 

1. The multivariate tests show more stable size than their univariate counterparts 

when the lag length is chosen as / = l2. 

2. The multivariate tests are overall more powerful than their univariate counter­

parts. The multivariate LMi tests show most stable size and are most powerful 

among the multivariate tests in most cases; therefore, the multivariate LMi 

tests are preferred to other multivariate tests. 

3. For detrended series, the multivariate tests using the automatic lag keep the 

nominal size reasonably well at T — 200 and T = 400 and outperform the uni­

variate counterparts using the automatic lag selection in terms of size. Further, 

the multivariate tests using the automatic lag selection methods are appreciably 

more powerful than other kinds of tests. 

Chapter III studies cointegration tests that can be applied to a system of equations 

as well as to a single equation. The tests use cointegration as the null hypothesis 

and no-cointegration as an alternative hypothesis. Limiting distributions for the test 

statistics are derived and tabulated. To obtain nuisance parameter free test statistics, 

the CCR (canonical cointegration regression) is used in cointegration regression. It 

is also shown that other efficient estimators such as FM-OLS could be used to obtain 

the same analytical results. Simulation was performed to evaluate the finite sample 

performance of the tests. The simulation results indicates that: 
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1. The multivariate LMj test shows more stable size and is more powerful than 

its univariate counterpart for models with time trends. 

2. Both the univariate and multivariate LMn tests show low power. 

3. The univariate SBDHi test shows more stable size and is more powerful than 

its multivariate counterpart. 

Chapter IV of the dissertation proposes stationarity tests that can be applied to 

multivariate time series as well as to univariate time series allowing structural breaks. 

In addition, we allow structural break point to be unknown apriori. In connection 

with Perron (1989), omitted structural breaks cause stationarity tests to diverge and 

hence reject the null of stationarity asymptotically. To construct consistent tests 

under the condition, we use stationarity with structural breaks as the null hypothesis 

against nonstationarity as the alternative hypothesis. Our simulation results show 

that: 

1. Multivariate LMu suffers size distortion in a negative direction. When T = 200, 

400, LMu become significantly powerful. Multivariate LMi keeps its nominal 

size at T — 400 and is also powerful. 

2. For all the models considered, the multivariate tests maintain their nominal size 

well relative to their univariate counterparts. 

3. For all the models, all the tests suffer from serious size distortions at sample 

sizes T = 100 and 200. 
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Table 1 Percentiles for LMj, LMu and SBDH 
(a) Standard 

n 90% 95% 97.5% 99% 
n = 1 LMi 

LMu 
SBDH 

0.7272 
2.9772 
1.1936 

2.0185 
4.1274 
1.6579 

4.0479 
5.2750 
2.1144 

7.9380 
6.8669 
2.7697 

n = 2 LMi 
LMu 

SBDH 

4.7612 
10.3933 
2.0784 

7.9451 
12.2266 
2.6324 

12.0762 
13.9625 

3.1842 

18.9540 
16.1380 

3.9445 
n = 3 LMi 

LMu 
SBDH 

10.3225 
21.5690 
2.8229 

15.5646 
23.9975 

3.4218 

21.7677 
26.1924 
4.0341 

31.7510 
28.9080 
4.8367 

n = 4 LMi 
LMu 

SBDH 

17.8355 
36.6424 
3.5272 

25.1326 
39.6987 
4.2076 

33.7058 
42.4923 
4.8804 

46.3680 
46.0010 
5.7193 

n = 5 LMi 
LMu 

SBDH 

26.8098 
55.4286 
4.2459 

36.4614 
59.1478 
4.9778 

47.1369 
62.3957 
5.6900 

63.8845 
66.4541 
6.5813 

n = 6 LMi 
LMu 

SBDH 

37.0236 
78.1676 
4.8879 

49.1842 
82.4698 

5.6733 

62.4234 
86.1781 

6.4210 

81.5779 
90.9577 
7.3680 
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Table 1 (continued) 
(b) Demeaned 

n 90% 95% 97.5% 99% 
n= 1 LMI 0.2485 0.2496 0.2499 0.2500 

LMu 6.4249 7.9974 9.5459 11.4497 
SBDHT 0.1929 0.2477 0.3046 0.3838 
SBDHB 0.3471 0.4589 0.5798 0.7419 

P II to
 

LMI 0.7462 0.9338 1.1588 1.5162 
LMU 15.3359 17.4409 19.4965 22.0910 

SBDHT 0.3384 0.4063 0.4739 0.5648 
SBDHB 0.6061 0.7464 0.8880 1.0736 

n = 3 LMI 1.5238 1.8656 2.2551 2.8098 
LMU 27.8297 30.5677 33.0936 36.0653 

SBDHT 0.4728 0.5491 0.6243 0.7238 
SBDHB 0.8440 0.9933 1.1456 1.3395 

ii = 4 LMI 2.5228 3.0290 3.5800 4.4059 
LMU 44.1606 47.4113 50.3741 53.8893 

SBDHT 0.6012 0.6859 0.7637 0.8714 
SBDHB 1.0599 1.2355 1.4078 1.6156 

n = 5 LMI 3.7147 4.4186 5.1507 6.1883 
LMu 64.2989 68.1676 71.6155 75.8429 

SBDHT 0.7246 0.8157 0.9014 1.0085 
SBDHB 1.2774 1.4636 1.6402 1.8659 

n = 6 LMI 5.0410 5.9058 6.7655 8.0360 
LMU 88.1664 92.5229 96.4136 101.1127 

SBDHT 0.8412 0.9362 1.0298 1.1444 
SBDHB 1.4808 1.6757 1.8609 2.0987 
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Table 1 (continued) 
(c) Demeaned and detrended 

n 90% 95% 97.5% 99% 
n = 1 LMI 0.2492 0.2498 0.2500 0.2500 

LMu 9.5899 11.4628 13.2149 15.3448 
SBDHt 0.0909 0.1107 0.1313 0.1588 
SBDHB 0.1197 0.1478 0.1765 0.2173 

n = 2 LMI 0.6495 0.7544 0.8791 1.0606 
LMu 20.9409 23.4075 25.6712 28.4783 

SBDHT 0.1610 0.1864 0.2104 0.2414 
SBDHB 0.2115 0.2476 0.2816 0.3297 

n = 3 LMI 1.1879 1.1347 1.5780 1.8635 
LMu 35.7871 38.8298 41.5512 44.9975 

SBDHT 0.2265 0.2549 0.2818 0.3171 
SBDHB 0.2964 0.3359 0.3747 0.4261 

n = 4 LMI 1.8337 2.0938 2.3609 2.7603 
LMu 54.1625 57.8637 61.0780 64.9712 

SBDHT 0.2894 0.3208 0.3511 0.3893 
SBDHB 0.3773 0.4220 0.4642 0.5189 

n = 5 LMI 2.5888 2.9310 3.2928 3.8092 
LMu 76.3091 80.3840 84.2197 88.6674 

SBDHT 0.3514 0.3858 0.4184 0.4573 
SBDHB 0.4578 0.5068 0.5522 0.6114 

n = 6 LMI 3.4452 3.8830 4.3318 4.9508 
LMU 102.2990 107.0575 111.1031 116.1178 

SBDHT 0.4129 0.4500 0.4845 0.5249 
SBDHB 0.5368 0.5884 0.6376 0.6979 

1. Percentiles are obtained by FORTRAN from 100000 iteration. 
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Table 2 Empirical Size of LMI, LMu, and SBDH 

B = 0.8 0.0 
0.2 0.8 

,fi = 
1.0 0.5 
0.5 1.5 

, Xo = 0, eo = 0. 

(a) Standard 
Univariate tests Multivariate tests 

1 = 2 l = h l = h 1 = 2 l = h l = h 
T = 100 LMi 0.59 0.42 0.16 0.77 0.52 0.12 

LMu 0.37 0.20 0.02 0.63 0.35 0.00 
SBDH 0.65 0.43 0.15 0.70 0.46 0.10 

II to
 

o
 

o
 

LMi 0.58 0.41 0.16 0.78 0.54 0.14 
LMu 0.37 0.21 0.04 0.64 0.40 0.01 

SBDH 0.66 0.43 0.15 0.72 0.47 0.13 
T = 400 LMi 0.57 0.34 0.14 0.79 0.45 0.13 

LMu 0.35 0.16 0.05 0.64 0.34 0.05 
SBDH 0.66 0.37 0.14 0.73 0.40 0.13 

(b) Demeaned 
T = 100 LMi 0.27 0.11 0.07 0.82 0.57 0.06 

LMu 0.00 0.00 0.00 0.37 0.14 0.00 
SBDHT 0.86 0.54 0.11 0.92 0.60 0.07 
SBDHB 0.79 0.51 0.17 0.85 0.56 0.12 o

 
o
 

CN II H
 LMI 0.29 0.15 0.07 0.84 0.65 0.09 

LMu 0.01 0.00 0.00 0.44 0.24 0.00 
SBDHT 0.90 0.60 0.15 0.95 0.68 0.12 
SBDHB 0.82 0.53 0.18 0.88 0.60 0.14 

•-3
 

II o
 

o
 

LMI 0.32 0.14 0.09 0.87 0.59 0.11 
LMu 0.02 0.00 0.01 0.48 0.23 0.01 

SBDHT 0.92 0.55 0.17 0.96 0.60 0.13 
SBDHB 0.84 0.47 0.17 0.90 0.51 0.14 

(c) Demeaned and Detrended 
T = 100 LMI 0.06 0.05 0.06 0.76 0.54 0.01 

LMu 0.00 0.00 0.00 0.30 0.07 0.00 
SBDHT 0.95 0.66 0.11 0.98 0.74 0.09 
SBDHB 0.94 0.67 0.18 0.97 0.74 0.14 

T = 200 LMI 0.11 0.05 0.06 0.82 0.62 0.05 
LMu 0.00 0.00 0.00 0.40 0.20 0.00 

SBDHT 0.98 0.75 0.15 0.99 0.82 0.11 
SBDHB 0.96 0.71 0.18 0.98 0.79 0.15 

II ib
. o
 

o
 

LMI 0.14 0.06 0.07 0.84 0.58 0.07 
LMU 0.00 0.00 0.00 0.45 0.20 0.00 

SBDHT 0.99 0.71 0.19 1.00 0.76 0.15 
SBDHB 0.98 0.66 0.21 0.99 0.71 0.16 
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Table 3 Empirical Power of LMi, LMu» and SBDH 

D _ r 1.0 0.0 1 0 _ f 1.0 0.5 1 _ n _A 
0.8 J [ 0.5 1.5 J i®° — 0,eo — 0. 

(a) Standard 
Univariate tests Multivariate tests 

1 = 2 l = h l = h 1 = 2 I = h l = h 
T = 100 LMi 0.92 0.87 0.70 0.98 0.93 0.69 

LMu 0.86 , 0.80 0.52 0.95 0.88 0.02 
SBDH 0.93 0.82 0.40 0.95 0.85 0.39 

T = 200 LMi 0.93 0.90 0.79 0.99 0.96 0.82 
LMu 0.88 0.84 0.69 0.97 0.93 0.66 

SBDH 0.98 0.91 0.65 0.99 0.93 0.65 o
 

o
 II H
 LMi 0.95 0.91 0.83 0.99 0.97 0.88 

LMU 0.89 0.86 0.76 0.98 0.95 0.84 
SBDH 1.00 0.95 0.77 1.00 0.96 0.78 

(b) Demeaned 
T= 100 LMI 0.74 0.56 0.02 0.95 0.85 0.22 

LMu 0.14 0.00 0.00 0.41 0.13 0.02 
SBDHT 0.99 0.91 0.51 1.00 0.95 0.49 
SBDHB 0.98 0.91 0.66 0.99 0.94 0.65 o

 
o
 II LMI 0.82 0.72 0.24 0.98 0.94 0.47 

LMu 0.44 0.15 0.00 0.73 0.39 0.01 
SBDHT 1.00 0.99 0.71 1.00 0.99 0.73 
SBDHB 1.00 0.98 0.77 1.00 0.99 0.79 o

 
o
 II LMI 0.88 0.78 0.54 0.99 0.96 0.77 

LMu 0.59 0.34 0.00 0.88 0.65 0.08 
SBDHT 1.00 1.00 0.88 1.00 1.00 0.88 
SBDHB 1.00 0.99 0.89 1.00 1.00 0.89 

(c) Demeaned and Detrended 

t-3
 

II •-»
 

o
 

o
 

LMI 0.28 0.02 0.03 0.83 0.58 0.05 
LMu 0.00 0.00 0.00 0.27 0.07 0.00 

SBDHT 0.99 0.90 0.34 1.00 0.95 0.34 
SBDHB 1.00 0.93 0.52 1.00 0.96 0.51 

T = 200 LMI 0.55 0.29 0.03 0.94 0.82 0.26 
LMu 0.03 0.00 0.00 0.47 0.24 0.00 

SBDHT 1.00 0.99 0.61 1.00 1.00 0.62 
SBDHB 1.00 0.99 0.73 1.00 0.99 0.73 o

 
o
 II LMI 0.69 0.46 0.02 0.98 0.90 0.45 

LMU 0.20 0.00 0.00 0.71 0.40 0.03 
SBDHT 1.00 1.00 0.86 1.00 1.00 0.86 
SBDHB 1.00 1.00 0.90 1.00 1.00 0.90 
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Table 4 Empirical Power of LMi, LMu> and SBDH 

B = 1.0 0 
0.0 0 

.2 1 n _ f 1.0 0.5 1 _ n _ n 

.8 J ' [ 0.5 1.5 J t'o-O.eo-O. 

(a) Standard 
Univariate tests Multivariate tests 

, 1 = 2 l = h l = h 1 = 2 I = /i l = h 
T = 100 LMi 0.91 0.85 0.67 0.99 0.95 0.66 

LMu 0.85 0.78 0.49 0.99 0.97 0.04 
SBDH 0.91 0.79 0.39 0.93 0.80 0.34 

H
 

II to
 

o
 

o
 

LMi 0.93 0.89 0.77 1.00 0.99 0.82 
LMu 0.87 0.83 0.69 0.99 0.99 0.86 

SBDH 0.98 0.91 0.64 0.98 0.91 0.60 o
 

o
 II LMi 0.95 0.91 0.83 1.00 0.99 0.91 

LMu 0.90 0.86 0.77 1.00 0.99 0.96 
SBDH 1.00 0.85 0.77 1.00 0.96 0.74 

(b) Demeaned 
T = 100 LMi 0.77 0.59 0.05 1.00 0.97 0.33 

LMu 0.16 0.00 0.00 0.78 0.40 0.00 
SBDHT 0.99 0.93 0.51 1.00 0.95 0.46 
SBDHB 0.99 0.93 0.69 0.99 0.94 0.63 

T = 200 LMI 0.85 0.74 0.26 1.00 1.00 0.66 
LMu 0.45 0.14 0.00 0.97 0.81 0.04 

SBDHT 1.00 0.99 0.73 1.00 0.99 0.71 
SBDHB 1.00 0.98 0.79 1.00 0.99 0.78 o

 
o
 II H
 LMI 0.89 0.79 0.55 1.00 1.00 0.93 

LMu 0.60 0.35 0.00 0.99 0.95 0.35 
SBDHT 1.00 1.00 0.88 1.00 1.00 0.86 
SBDHB 1.00 0.99 0.89 1.00 0.99 0.87 

(c) Demeaned and Detrended 

II h-*
 

o
 

o
 

LMI 0.33 0.04 0.05 0.98 0.89 0.05 
LMu 0.00 0.00 0.00 0.75 0.33 0.00 

SBDHT 1.00 0.92 0.36 1.00 0.94 0.26 
SBDHB 1.00 0.95 0.56 1.00 0.96 0.42 

H
 

II to
 

o
 

o
 

LMI 0.56 0.31 0.05 1.00 0.99 0.43 
LMU 0.03 0.00 0.00 0.95 0.78 0.00 

SBDHT 1.00 0.99 0.63 1.00 0.99 0.56 
SBDHB 1.00 0.99 0.74 1.00 0.99 0.66 

T = 400 LMI 0.69 0.48 0.05 1.00 1.00 0.78 
LMu 0.20 0.01 0.00 0.99 0.93 0.24 

SBDHT 1.00 1.00 0.86 1.00 1.00 0.81 
SBDHB 1.00 1.00 0.90 1.00 1.00 0.85 

1. Fraction of rejection from 5000 iteration each case. 

2. Bartellet's kernel is used for estimating longrun variance. 
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Table 4 Percentiles for LMi (Standard) 

n Percentile 

H
 II a
 m = 2 m = 3 m = 4 m = 5 m = 6 

n = 1 80.0 0.2437 0.2441 0.2454 0.2463 0.2469 0.2474 
85.0 0.2472 0.2469 0.2475 0.2479 0.2483 0.2486 
90.0 0.2494 0.2488 0.2489 0.2491 0.2492 0.2494 
95.0 0.3036 0.2498 0.2498 0.2498 0.2498 0.2498 
97.5 0.9032 0.2500 0.2500 0.2499 0.2500 0.2500 
99.0 2.5445 0.5229 0.2500 0.2500 0.2500 0.2500 

n = 2 80.0 0.8185 0.5920 0.5443 0.5273 0.5217 0.5172 
85.0 1.0160 0.6583 0.5793 0.5504 0.5404 0.5332 
90.0 1.4099 0.7709 0.6366 0.5890 0.5707 0.5576 
95.0 2.5155 1.0509 0.7626 0.6670 0.6312 0.6053 
97.5 4.3857 1.5717 0.9397 0.7691 0.7015 0.6584 
99.0 7.9024 2.9995 1.3049 0.9471 0.8165 0.7406 

n = 3 80.0 2.0527 1.2207 1.0015 0.9202 0.8791 0.8529 
85.0 2.5480 1.3781 1.0770 0.9705 0.9178 0.8834 
90.0 3.4819 1.6494 1.1977 1.0468 0.9767 0.9284 
95.0 5.7062 2.3003 1.4780 1.1922 1.0830 1.0107 
97.5 8.9236 3.4278 1.8639 1.3845 1.2108 1.0957 
99.0 14.4986 5.7965 2.7544 1.7450 1.3934 1.2242 

n = 4 80.0 3.8355 2.0743 1.5922 1.4042 1.3046 1.2419 
85.0 4.7504 2.3662 1.7229 1.4867 1.3657 1.2890 
90.0 6.3419 2.8721 1.9228 1.6090 1.4523 1.3558 
95.0 9.9709 4.0752 2.3978 1.8503 1.6156 1.4763 
97.5 14.4285 5.9130 3.0452 2.1346 1.7996 1.6048 
99.0 22.2499 9.3994 4.4329 2.6694 2.0937 1.8105 

n = 5 80.0 6.1916 3.1531 2.3228 1.9744 1.7896 1.6825 
85.0 7.5904 3.5891 2.5313 2.0945 1.8713 1.7464 
90.0 9.9586 4.3568 2.8451 2.2716 1.9922 1.8405 
95.0 14.9707 6.1287 3.5457 2.6297 2.2144 2.0032 
97.5 21.3239 8.8480 4.4904 3.0591 2.4760 2.1839 
99.0 31.3771 13.8110 6.4955 3.8137 2.8955 2.4441 

n = 6 80.0 9.1431 4.4892 3.1709 2.6312 2.3449 2.1778 
85.0 11.1061 5.1421 3.4510 2.7954 2.4543 2.2620 
90.0 14.3591 6.2806 3.9181 3.0431 2.6164 2.3787 
95.0 21.3865 8.9357 4.9132 3.5219 2.9141 2.5930 
97.5 29.8335 12.7621 6.2569 4.1417 3.2439 2.8134 
99.0 42.7340 19.1125 9.0353 5.3212 3.7998 3.1756 



www.manaraa.com

Table 6 Percentiles for LMu (Standard) 

n Percentile m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 
n = 1 80.0 2.5709 3.4170 4.3106 5.1908 6.0450 6.8141 

85.0 3.1276 4.0910 5.0937 6.0357 6.9246 7.8061 
90.0 3.9040 5.0124 6.1394 7.1619 8.1586 9.0989 
95.0 5.2222 6.6258 7.9029 9.0001 10.1496 11.1987 
97.5 6.6127 8.1214 9.5620 10.7460 12.0665 13.1536 
99.0 8.4243 10.2593 11.6822 13.0848 14.4802 15.5838 

n = 2 80.0 9.4273 10.8848 12.4319 14.0078 15.4867 16.9384 
85.0 10.3461 11.8686 13.4847 15.1192 16.6577 18.1699 
90.0 11.5575 13.1273 14.7980 16.5792 18.2060 19.7805 
95.0 13.5426 15.2007 17.0386 18.9842 20.6605 22.3786 
97.5 15.3095 17.1816 19.1432 21.2985 22.9823 24.7437 
99.0 17.6571 19.7355 21.8308 24.0450 25.9683 27.9961 

n = 3 80.0 20.2925 22.2213 24.3578 26.5310 28.8783 31.0254 
85.0 21.5214 23.4987 25.6760 27.9599 30.3641 32.5787 
90.0 23.0755 25.1254 27.4498 29.7578 32.2528 34.5860 
95.0 25.5862 27.7373 30.2373 32.6519 35.2991 37.6136 
97.5 27.8607 30.1026 32.8490 35.2348 37.9976 40.4388 
99.0 30.8610 33.0612 35.9015 38.6289 41.8618 44.2828 

n = 4 80.0 34.9778 37.3162 40.0581 42.9981 45.8813 48.7993 
85.0 36.5177 38.9013 41.6240 44.7357 47.6874 50.5531 
90.0 38.5407 40.9126 43.8259 46.9339 50.0516 52.9677 
95.0 41.6453 44.0221 47.2252 50.3192 53.6123 56.7808 
97.5 44.4768 46.9278 50.1980 53.4945 56.8813 59.9984 
99.0 47.8536 50.5164 53.7032 57.2386 60.6772 64.0372 

n = 5 80.0 53.6717 56.3111 59.5939 62.8798 66.5900 70.2981 
85.0 55.4799 58.2347 61.5591 64.9822 68.6421 72.4531 
90.0 57.8932 60.6753 64.0381 67.6467 71.2566 75.1713 
95.0 61.6636 64.4687 67.9953 71.7425 75.4170 79.4815 
97.5 64.9452 67.9830 71.4581 75.3258 79.1816 83.2116 
99.0 69.1504 71.9643 75.7566 79.3927 83.6706 87.7385 

n = 6 80.0 76.0539 79.2459 82.6764 86.6414 91.0903 95.2365 
85.0 78.2076 81.5085 84.9499 88.9537 93.5228 97.7492 
90.0 81.0740 84.3232 87.8220 91.9179 96.6445 100.9909 
95.0 85.3775 88.5987 92.2587 96.5143 101.3307 105.8249 
97.5 89.3121 92.5218 96.3610 100.6749 105.6705 109.9584 
99.0 93.7564 97.2678 100.9998 105.4917 110.2520 115.3793 
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Table 7 Percentiles for SBDH (Standard) 

n Percentile m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 
13

 

II 80.0 0.5336 0.3902 0.2977 0.2385 0.1997 0.1711 
85.0 0.6614 0.4825 0.3673 0.2925 0.2445 0.2084 
90.0 0.8583 0.6268 0.4783 0.3738 0.3136 0.2664 
95.0 1.2132 0.8900 0.6788 0.5286 0.4430 0.3771 
97.5 1.5842 1.1826 0.9101 0.7075 0.5912 0.5021 
99.0 2.1317 1.5944 1.2289 0.9793 0.8034 0.6763 

II a
 80.0 1.0596 0.7742 0.5975 0.4780 0.3938 0.3351 

85.0 1.2368 0.9087 0.7007 0.5569 0.4551 0.3904 
90.0 1.4942 1.0993 0.8562 0.6717 0.5528 0.4690 
95.0 1.9458 1.4564 1.1242 0.8925 0.7284 0.6168 
97.5 2.4239 1.8185 1.4051 1.1201 0.9071 0.7772 
99.0 3.0732 2.3815 1.8361 1.4454 1.1728 0.9879 

n = 3 80.0 1.5534 1.1428 0.8724 0.7027 0.5814 0.4942 
85.0 1.7710 1.3073 1.0020 0.8024 0.6625 0.5612 
90.0 2.0693 1.5496 1.1888 0.9502 0.7829 0.6570 
95.0 2.5946 1.9694 1.5215 1.2098 0.9999 0.8285 
97.5 3.1355 2.4070 1.8562 1.4866 1.2288 1.0054 
99.0 3.8814 3.0245 2.3363 1.8956 1.5757 1.2765 

n = 4 80.0 2.0417 1.4982 1.1492 0.9173 0.7608 0.6443 
85.0 2.3001 1.6961 1.2943 1.0372 0.8571 0.7231 
90.0 2.6605 1.9671 1.5086 1.2088 1.0008 0.8345 
95.0 3.2325 2.4467 1.8862 1.5094 1.2418 1.0305 
97.5 3.7983 2.9220 2.2727 1.8328 1.5022 1.2457 
99.0 4.5727 3.5574 2.8083 2.2555 1.8581 1.5415 

n = 5 80.0 2.4859 1.8430 1.4244 1.1328 0.9357 0.7961 
85.0 2.7714 2.0606 1.5967 1.2718 1.0430 0.8882 
90.0 3.1554 2.3663 1.8374 1.4640 1.1934 1.0174 
95.0 3.7984 2.9027 2.2595 1.7969 1.4670 1.2418 
97.5 4.4314 3.4314 2.6813 2.1606 1.7589 1.4801 
99.0 5.2790 4.1554 3.2809 2.6512 2.1651 1.7978 

n = 6 80.0 2.9600 2.2001 1.6930 1.3405 1.1071 0.9405 
85.0 3.2640 2.4467 1.8866 1.4896 1.2246 1.0389 
90.0 3.6956 2.7886 2.1606 1.7059 1.3956 1.1798 
95.0 4.4002 3.3635 2.6228 2.0841 1.6975 1.4355 
97.5 5.0784 3.9272 3.0782 2.4888 2.0110 1.6930 
99.0 5.9630 4.6961 3.7107 3.0353 2.4191 2.0323 
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Table 8 Percentiles for LMi (Demeaned) 

11 Percentile m = 1 m = 2 m = 3 3
 ll m = 5 m = 6 

n = 1 80.0 0.2465 0.2475 0.2481 0.2485 0.2487 0.2490 
85.0 0.2480 0.2486 0.2490 0.2492 0.2493 0.2494 
90.0 0.2491 0.2494 0.2495 0.2496 0.2497 0.2498 
95.0 0.2498 0.2498 0.2499 0.2499 0.2499 0.2499 
97.5 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 
99.0 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 

n = 2 80.0 0.5646 0.5474 0.5362 0.5312 0.5260 0.5230 
85.0 0.6008 0.5731 0.5564 0.5479 0.5397 0.5352 
90.0 0.6569 0.6148 0.5869 0.5733 0.5610 0.5548 
95.0 0.7710 0.6942 0.6458 0.6222 0.6001 0.5900 
97.5 0.9127 0.7872 0.7108 0.6748 0.6463 0.6300 
99.0 1.1243 0.9336 0.8198 0.7551 0.7124 0.6843 

n = 3 80.0 1.0370 0.9551 0.9064 0.8790 0.8592 0.8422 
85.0 1.1106 1.0058 0.9452 0.9100 0.8843 0.8647 
90.0 1.2191 1.0789 1.0006 0.9549 0.9202 0.8955 
95.0 1.4292 1.2194 1.1013 1.0362 0.9828 0.9498 
97.5 1.6672 1.3667 1.2156 1.1225 1.0517 1.0054 
99.0 2.0031 1.6022 1.3786 1.2487 1.1460 1.0799 

n = 4 80.0 1.6240 1.4364 1.3322 1.2738 1.2275 1.1973 
85.0 1.7377 1.5149 1.3896 1.3180 1.2646 1.2280 
90.0 1.9084 1.6270 1.4742 1.3811 1.3180 1.2695 
95.0 2.1990 1.8263 1.6194 1.4935 1.4090 1.3443 
97.5 2.5284 2.0515 1.7725 1.6080 1.5030 1.4212 
99.0 3.0437 2.3755 1.9968 1.7787 1.6285 1.5191 

n = 5 80.0 2.3226 2.0013 1.8230 1.7106 1.6355 1.5830 
85.0 2.4842 2.1055 1.8994 1.7715 1.6833 1.6226 
90.0 2.7126 2.2571 2.0067 1.8554 1.7501 1.6789 
95.0 3.1382 2.5344 2.1855 2.0024 1.8666 1.7711 
97.5 3.6327 2.8318 2.3931 2.1545 1.9753 1.8686 
99.0 4.3553 3.3034 2.6802 2.3681 2.1292 2.0022 

n = 6 80.0 3.1506 2.6471 2.3563 2.1884 2.0818 1.9969 
85.0 3.3623 2.7820 2.4521 2.2637 2.1410 2.0472 
90.0 3.6677 2.9787 2.5946 2.3691 2.2264 2.1175 
95.0 4.2250 3.3305 2.8405 2.5449 2.3718 2.2317 
97.5 4.8285 3.7292 3.0852 2.7206 2.5116 2.3445 
99.0 5.7534 4.3056 3.4359 2.9756 2.7045 2.4999 
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Table 9 Percentiles for LMu (Demeaned) 

n Percentile m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 

II 80.0 7.1762 9.6126 11.9301 14.2269 16.5973 18.7670 
85.0 8.0316 10.5198 12.9698 15.3275 17.7321 20.0164 
90.0 9.1525 11.7931 14.3561 16.7887 19.2769 21.6864 
95.0 10.9099 13.8092 16.6086 19.0831 21.7412 24.2678 
97.5 12.6799 15.5878 18.6422 21.1779 24.0997 26.5259 
99.0 14.9562 17.9105 21.1685 23.8297 26.9834 29.4622 

n = 2 80.0 17.3303 21.7721 26.1513 30.4971 34.7387 39.1603 
85.0 18.5145 23.1510 27.6003 32.0995 36.3710 40.8938 
90.0 20.0872 24.8577 29.5085 34.1196 38.4864 43.1702 
95.0 22.5893 27.5014 32.3490 37.2962 41.7797 46.7142 
97.5 24.8841 29.9888 35.0361 40.1632 44.8102 49.6717 
99.0 27.6102 33.0736 38.2635 43.6378 48.3947 53.5310 eo II ft 80.0 31.1272 37.4997 43.8191 50.2451 56.5445 62.7026 
85.0 32.6274 39.2213 45.6021 52.1526 58.5455 64.9128 
90.0 34.6752 41.4005 47.9422 54.5987 61.1815 67.6094 
95.0 37.6457 44.6952 51.5388 58.4182 65.1352 71.8293 
97.5 40.4527 47.8406 54.7544 61.8523 68.8149 75.7351 
99.0 43.8557 51.4284 58.8092 66.1747 73.2717 80.1752 

n = 4 80.0 48.7143 57.0225 65.2570 73.5334 81.6219 89.9856 
85.0 50.5938 59.0167 67.3497 75.9159 84.0330 92.4201 
90.0 52.9798 61.6339 70.2033 78.8175 87.2199 95.7463 
95.0 56.5722 65.5914 74.4239 83.2953 91.8193 100.4379 
97.5 59.6847 69.2061 78.1617 87.0748 96.2869 104.6842 
99.0 63.6372 73.3739 82.7422 91.6949 101.3816 109.8979 

n = 5 80.0 70.2398 80.5093 90.5150 100.5141 110.7268 120.7246 
85.0 72.3576 82.8615 92.9578 103.1082 113.4694 123.5394 
90.0 75.0910 85.7999 96.0979 106.3955 116.9811 127.1228 
95.0 79.4220 90.2783 100.9179 111.4465 122.3454 132.6250 
97.5 83.0968 94.2468 105.1320 115.8080 126.8255 137.6890 
99.0 87.7802 99.0079 110.1166 121.2237 132.5819 143.2921 

n = 6  80.0 95.5274 107.6418 119.5446 131.4923 143.2641 155.2408 
85.0 98.0206 110.2411 122.3393 134.3788 146.3465 158.4407 
90.0 101.1618 113.6969 125.8283 138.0724 150.2357 162.3995 
95.0 106.0511 118.7723 131.2636 143.6167 156.1188 168.6000 
97.5 110.4545 123.2418 135.9532 148.5755 161.1717 174.0185 
99.0 115.7110 128.4192 142.3224 154.6084 167.5370 180.7248 
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Table 10 Percentiles for SBDHi (Demeaned) 

n Percentile m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 
n = 1 80.0 0.0845 0.0563 0.0420 0.0333 0.0272 0.0231 

85.0 0.0961 0.0631 0.0466 0.0365 0.0295 0.0249 
90.0 0.1133 0.0728 0.0530 0.0409 0.0329 0.0275 
95.0 0.1460 0.0909 0.0647 0.0491 0.0385 0.0321 
97.5 0.1830 0.1107 0.0770 0.0574 0.0444 0.0369 
99.0 0.2389 0.1422 0.0962 0.0699 0.0531 0.0435 

n = 2 80.0 0.1625 0.1094 0.0802 0.0633 0.0522 0.0443 
85.0 0.1794 0.1196 0.0867 0.0677 0.0554 0.0468 
90.0 0.2037 0.1334 0.0958 0.0742 0.0600 0.0504 
95.0 0.2481 0.1585 0.1118 0.0852 0.0676 0.0563 
97.5 0.2961 0.1855 0.1287 0.0963 0.0753 0.0623 
99.0 0.3615 0.2260 0.1527 0.1110 0.0861 0.0706 

n = 3 80.0 0.2367 0.1596 0.1179 0.0930 0.0762 0.0646 
85.0 0.2577 0.1714 0.1257 0.0986 0.0801 0.0678 
90.0 0.2878 0.1888 0.1368 0.1065 0.0856 0.0719 
95.0 0.3424 0.2200 0.1565 0.1196 0.0944 0.0789 
97.5 0.4009 0.2524 0.1767 0.1334 0.1034 0.0859 
99.0 0.4815 0.2996 0.2048 0.1539 0.1152 0.0959 

n = 4 80.0 0.3089 0.2085 0.1542 0.1217 0.1002 0.0848 
85.0 0.3340 0.2231 0.1633 0.1278 0.1050 0.0883 
90.0 0.3702 0.2438 0.1763 0.1366 0.1112 0.0931 
95.0 0.4329 0.2806 0.1985 0.1520 0.1215 0.1011 
97.5 0.5007 0.3225 0.2215 0.1671 0.1320 0.1088 
99.0 0.5946 0.3806 0.2536 0.1890 0.1466 0.1194 

n = 5 80.0 0.3823 0.2565 0.1903 0.1502 0.1236 0.1052 
85.0 0.4114 0.2728 0.2005 0.1575 0.1287 0.1091 
90.0 0.4530 0.2961 0.2145 0.1675 0.1358 0.1147 
95.0 0.5278 0.3366 0.2393 0.1839 0.1475 0.1235 
97.5 0.6028 0.3798 0.2665 0.2008 0.1591 0.1324 
99.0 0.7051 0.4471 0.3049 0.2241 0.1751 0.1446 

n = 6 80.0 0.4557 0.3057 0.2270 0.1782 0.1471 0.1248 
85.0 0.4889 0.3236 0.2388 0.1861 0.1528 0.1292 
90.0 0.5362 0.3499 0.2545 0.1970 0.1606 0.1352 
95.0 0.6183 0.3963 0.2835 0.2163 0.1743 0.1449 
97.5 0.6988 0.4445 0.3118 0.2357 0.1873 0.1546 
99.0 0.8021 0.5159 0.3559 0.2617 0.2057 0.1679 
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Table 11 Percentiles for SBDHu (Demeaned) 

n Percentile m= 1 m = 2 m = 3 m = 4 m = 5 m = 6 
n = 1 80.0 0.1605 0.1150 0.0879 0.0706 0.0587 0.0500 

85.0 0.1892 0.1337 0.1013 0.0803 0.0657 0.0558 
90.0 0.2321 0.1619 0.1209 0.0949 0.0763 0.0642 
95.0 0.3159 0.2195 0.1602 0.1225 0.0969 0.0801 
97.5 0.4079 0.2863 0.2046 0.1525 0.1208 0.0977 
99.0 0.5348 0.3927 0.2738 0.2029 0.1579 0.1250 

n = 2 80.0 0.3162 0.2259 0.1718 0.1365 0.1127 0.0955 
85.0 0.3581 0.2545 0.1920 0.1508 0.1235 0.1039 
90.0 0.4216 0.2979 0.2221 0.1715 0.1392 0.1161 
95.0 0.5312 0.3764 0.2782 0.2103 0.1685 0.1386 
97.5 0.6415 0.4662 0.3417 0.2558 0.2013 0.1638 
99.0 0.7963 0.5898 0.4360 0.3219 0.2509 0.2015 

n = 3 80.0 0.4713 0.3336 0.2525 0.2002 0.1656 0.1403 
85.0 0.5249 0.3709 0.2776 0.2187 0.1794 0.1510 
90.0 0.6053 0.4250 0.3163 0.2461 0.1996 0.1659 
95.0 0.7368 0.5218 0.3864 0.2970 0.2359 0.1939 
97.5 0.8789 0.6272 0.4645 0.3569 0.2796 0.2246 
99.0 1.0516 0.7825 0.5826 0.4426 0.3435 0.2692 

n = 4 80.0 0.6115 0.4380 0.3323 0.2638 0.2175 0.1844 
85.0 0.6754 0.4837 0.3629 0.2860 0.2341 0.1972 
90.0 0.7648 0.5486 0.4083 0.3183 0.2588 0.2157 
95.0 0.9172 0.6651 0.4910 0.3786 0.3017 0.2483 
97.5 1.0685 0.7863 0.5777 0.4454 0.3514 0.2831 
99.0 1.2657 0.9513 0.7126 0.5518 0.4198 0.3345 

n = 5 80.0 0.7604 0.5405 0.4116 0.3265 0.2686 0.2283 
85.0 0.8305 0.5932 0.4473 0.3523 0.2880 0.2434 
90.0 0.9275 0.6692 0.4989 0.3901 0.3150 0.2643 
95.0 1.0997 0.7998 0.5985 0.4597 0.3667 0.3018 
97.5 1.2694 0.9391 0.7071 0.5356 0.4194 0.3437 
99.0 1.4863 1.1275 0.8516 0.6525 0.5040 0.4019 

n = 6 80.0 0.9034 0.6451 0.4906 0.3878 0.3191 0.2711 
85.0 0.9831 0.7059 0.5314 0.4174 0.3406 0.2875 
90.0 1.0915 0.7928 0.5915 0.4595 0.3717 0.3115 
95.0 1.2773 0.9419 0.7022 0.5378 0.4278 0.3536 
97.5 1.4511 1.0961 0.8184 0.6225 0.4872 0.3992 
99.0 1.6733 1.3028 0.9863 0.7532 0.5826 0.4725 
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Table 12 Percentiles for LMi (Detrended) 

n Percentile m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 
n = 1 80.0 0.2477 0.2482 0.2486 0.2487 0.2489 0.2491 

85.0 0.2487 0.2490 0.2492 0.2493 0.2494 0.2495 
90.0 0.2494 0.2495 0.2496 0.2497 0.2497 0.2498 
95.0 0.2499 0.2499 0.2499 0.2499 0.2499 0.2499 
97.5 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 
99.0 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 

n = 2 80.0 0.5435 0.5351 0.5306 0.5262 0.5230 0.5201 
85.0 0.5679 0.5547 0.5468 0.5396 0.5349 0.5307 
90.0 0.6058 0.5858 0.5724 0.5607 0.5537 0.5471 
95.0 0.6826 0.6446 0.6210 0.5992 0.5881 0.5774 
97.5 0.7684 0.7090 0.6746 0.6443 0.6283 0.6106 
99.0 0.9010 0.8055 0.7512 0.7122 0.6869 0.6597 

n = 3 80.0 0.9401 0.9025 0.8764 0.8587 0.8434 0.8336 
85.0 0.9858 0.9402 0.9071 0.8842 0.8650 0.8527 
90.0 1.0534 0.9944 0.9503 0.9213 0.8947 0.8802 
95.0 1.1768 1.0931 1.0291 0.9859 0.9478 0.9268 
97.5 1.3177 1.1999 1.1136 1.0512 1.0063 0.9742 
99.0 1.5234 1.3543 1.2307 1.1501 1.0875 1.0479 

n = 4 80.0 1.4091 1.3269 1.2660 1.2257 1.1948 1.1721 
85.0 1.4790 1.3815 1.3098 1.2613 1.2248 1.1982 
90.0 1.5791 1.4605 1.3704 1.3120 1.2678 1.2355 
95.0 1.7590 1.6006 1.4812 1.4008 1.3437 1.2996 
97.5 1.9501 1.7443 1.5895 1.4896 1.4203 1.3632 
99.0 2.2190 1.9459 1.7404 1.6154 1.5189 1.4455 

n = 5 80.0 1.9459 1.8015 1.7037 1.6332 1.5817 1.5386 
85.0 2.0395 1.8761 1.7630 1.6812 1.6227 1.5728 
90.0 2.1755 1.9821 1.8437 1.7464 1.6778 1.6215 
95.0 2.4129 2.1618 1.9837 1.8638 1.7684 1.7022 
97.5 2.6591 2.3461 2.1263 1.9799 1.8647 1.7850 
99.0 3.0234 2.6319 2.3200 2.1335 1.9926 1.9018 

n = 6 80.0 2.5555 2.3359 2.1796 2.0769 1.9950 1.9366 
85.0 2.6765 2.4314 2.2525 2.1380 2.0464 1.9796 
90.0 2.8519 2.5633 2.3533 2.2204 2.1161 2.0368 
95.0 3.1547 2.7854 2.5260 2.3606 2.2303 2.1345 
97.5 3.4589 3.0247 2.7001 2.5024 2.3426 2.2338 
99.0 3.9208 3.3568 2.9564 2.6841 2.4929 2.3584 
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Table 13 Percentiles for LMJI (Detrended) 

n Percentile m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 
n = 1 80.0 9.8129 12.0949 14.3799 16.5486 18.8354 21.1028 

85.0 10.7570 13.1239 15.5119 17.7313 20.0758 22.4270 
90.0 12.0415 14.4712 16.9648 19.3072 21.6749 24.0910 
95.0 14.0315 16.6214 19.2463 21.7245 24.2017 26.7028 
97.5 15.8423 18.4932 21.4231 23.9274 26.6642 29.2167 
99.0 18.3082 21.0856 24.0219 26.6802 29.6105 32.1198 

n = 2 80.0 22.1206 26.3875 30.6943 35.0177 39.2347 43.4898 
85.0 23.4311 27.8350 32.2162 36.6614 40.9854 45.3553 
90.0 25.1862 29.7988 34.2189 38.8068 43.2710 47.6533 
95.0 27.9566 32.6699 37.4264 42.1717 46.8651 51.3063 
97.5 30.4405 35.4499 40.1859 45.1936 50.0110 54.6356 
99.0 33.6920 39.0203 44.0434 48.8252 53.7368 58.5367 

P II CO
 

80.0 38.0286 44.2091 50.4044 56.8008 62.8464 68.9902 
85.0 39.6559 45.9733 52.3439 58.8194 64.9367 71.1540 
90.0 41.9000 48.2886 54.8801 61.3978 67.7452 74.0625 
95.0 45.1838 51.8177 58.7027 65.3096 71.8894 78.4133 
97.5 48.2195 55.1547 62.2333 68.9340 75.8450 82.2480 
99.0 51.9578 59.4050 66.2043 73.1684 80.2230 86.8722 

n = 4 80.0 57.5533 65.7962 73.6772 81.8823 90.0577 98.2578 
85.0 59.5573 67.9170 76.0172 84.2253 92.5525 100.8581 
90.0 62.0884 70.6629 78.9114 87.3308 95.7163 104.0957 
95.0 65.9285 74.9775 83.3934 92.0733 100.5286 109.1300 
97.5 69.3574 78.7374 87.5143 96.1099 104.7812 113.6196 
99.0 73.7297 82.9909 92.6478 100.8058 110.0271 118.7033 

n = 5 80.0 80.9272 90.7925 100.9372 111.0018 120.8225 130.9411 
85.0 83.2726 93.1670 103.4809 113.6661 123.6436 133.8571 
90.0 86.2079 96.2016 106.7626 117.2038 127.2677 137.6355 
95.0 90.6998 101.1296 111.8444 122.7103 132.7901 143.1030 
97.5 94.6788 105.5537 116.2289 127.2147 137.6111 148.2073 
99.0 99.5905 110.7282 121.6138 132.6195 143.4756 154.1548 

n = 6 80.0 107.8572 119.6488 131.7345 143.6312 155.6095 167.2452 
85.0 110.4673 122.3205 134.5998 146.5380 158.6935 170.4946 
90.0 113.8278 125.8779 138.2493 150.5703 162.6876 174.6662 
95.0 118.8295 131.1250 143.7042 156.4024 168.6027 180.9152 
97.5 123.2913 135.9239 148.7574 161.3756 173.8214 186.5704 
99.0 128.7368 141.3892 155.2307 167.4478 180.3714 193.4725 
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Table 14 Percentiles for SBDHi (Detrended) 

n Percentile m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 
n = 1 80.0 0.0533 0.0411 0.0328 0.0273 0.0230 0.0200 

85.0 0.0592 0.0452 0.0359 0.0295 0.0248 0.0215 
90.0 0.0674 0.0510 0.0401 0.0327 0.0274 0.0234 
95.0 0.0820 0.0613 0.0477 0.0385 0.0318 0.0270 
97.5 0.0982 0.0728 0.0557 0.0441 0.0363 0.0305 
99.0 0.1201 0.0891 0.0676 0.0524 0.0430 0.0356 

n = 2 80.0 0.1019 0.0782 0.0625 0.0518 0.0438 0.0381 
85.0 0.1102 0.0840 0.0667 0.0550 0.0463 0.0401 
90.0 0.1216 0.0925 0.0724 0.0595 0.0496 0.0430 
95.0 0.1403 0.1063 0.0828 0.0669 0.0554 0.0476 
97.5 0.1598 0.1207 0.0933 0.0747 0.0615 0.0522 
99.0 0.1849 0.1417 0.1086 0.0853 0.0696 0.0585 

n = 3 80.0 0.1481 0.1144 0.0917 0.0756 0.0643 0.0558 
85.0 0.1574 0.1215 0.0969 0.0797 0.0673 0.0583 
90.0 0.1713 0.1312 0.1041 0.0850 0.0715 0.0616 
95.0 0.1932 0.1483 0.1164 0.0944 0.0783 0.0674 
97.5 0.2158 0.1658 0.1283 0.1028 0.0852 0.0727 
99.0 0.2461 0.1877 0.1448 0.1159 0.0949 0.0798 

n = 4 80.0 0.1935 0.1494 0.1201 0.0994 0.0844 0.0732 
85.0 0.2050 0.1575 0.1261 0.1040 0.0879 0.0760 
90.0 0.2200 0.1691 0.1344 0.1102 0.0927 0.0797 
95.0 0.2459 0.1888 0.1484 0.1204 0.1007 0.0858 
97.5 0.2716 0.2090 0.1619 0.1308 0.1085 0.0920 
99.0 0.3012 0.2360 0.1803 0.1450 0.1188 0.1002 

n = 5 80.0 0.2385 0.1847 0.1479 0.1224 0.1043 0.0906 
85.0 0.2516 0.1942 0.1547 0.1275 0.1082 0.0937 
90.0 0.2688 0.2069 0.1639 0.1344 0.1134 0.0978 
95.0 0.2978 0.2285 0.1796 0.1457 0.1221 0.1048 
97.5 0.3252 0.2509 0.1953 0.1571 0.1310 0.1117 
99.0 0.3615 0.2795 0.2176 0.1730 0.1421 0.1201 

n = 6 80.0 0.2832 0.2198 0.1753 0.1457 0.1238 0.1077 
85.0 0.2973 0.2301 0.1829 0.1515 0.1283 0.1112 
90.0 0.3164 0.2443 0.1932 0.1591 0.1341 0.1158 
95.0 0.3469 0.2674 0.2103 0.1716 0.1438 0.1233 
97.5 0.3780 0.2908 0.2278 0.1839 0.1532 0.1307 
99.0 0.4147 0.3224 0.2521 0.2022 0.1666 0.1402 
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Table 15 Percentiles for SBDHu (Detrended) 

n Percentile m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 
£
 II 80.0 0.0761 0.0637 0.0544 0.0475 0.0416 0.0370 

85.0 0.0853 0.0713 0.0606 0.0525 0.0460 0.0407 
90.0 0.0986 0.0822 0.0693 0.0598 0.0520 0.0459 
95.0 0.1222 0.1024 0.0858 0.0735 0.0631 0.0551 
97.5 0.1476 0.1237 0.1036 0.0870 0.0750 0.0650 
99.0 0.1812 0.1533 0.1271 0.1071 0.0915 0.0795 

n = 2 80.0 0.1454 0.1219 0.1042 0.0904 0.0793 0.0707 
85.0 0.1581 0.1325 0.1128 0.0975 0.0850 0.0758 
90.0 0.1759 0.1473 0.1251 0.1077 0.0936 0.0829 
95.0 0.2068 0.1737 0.1468 0.1248 0.1085 0.0958 
97.5 0.2368 0.1995 0.1687 0.1444 0.1236 0.1084 
99.0 0.2779 0.2351 0.1997 0.1703 0.1463 0.1272 

n = 3 80.0 0.2108 0.1784 0.1527 0.1324 0.1163 0.1032 
85.0 0.2265 0.1916 0.1632 0.1410 0.1237 0.1096 
90.0 0.2473 0.2095 0.1778 0.1534 0.1341 0.1186 
95.0 0.2818 0.2395 0.2039 0.1751 0.1514 0.1338 
97.5 0.3163 0.2693 0.2290 0.1966 0.1699 0.1498 
99.0 0.3634 0.3145 0.2641 0.2279 0.1964 0.1726 

II <3 80.0 0.2757 0.2330 0.1997 0.1739 0.1525 0.1356 
85.0 0.2937 0.2483 0.2121 0.1845 0.1611 0.1430 
90.0 0.3176 0.2690 0.2291 0.1995 0.1729 0.1536 
95.0 0.3585 0.3039 0.2580 0.2245 0.1940 0.1709 
97.5 0.3964 0.3370 0.2866 0.2489 0.2140 0.1890 
99.0 0.4476 0.3818 0.3255 0.2855 0.2425 0.2124 

n = 5 80.0 0.3398 0.2879 0.2461 0.2139 0.1883 0.1678 
85.0 0.3596 0.3049 0.2604 0.2260 0.1982 0.1760 
90.0 0.3863 0.3283 0.2796 0.2419 0.2123 0.1877 
95.0 0.4295 0.3675 0.3124 0.2694 0.2351 0.2071 
97.5 0.4726 0.4043 0.3443 0.2968 0.2575 0.2261 
99.0 0.5265 0.4508 0.3878 0.3352 0.2884 0.2532 CO II 80.0 0.4031 0.3424 0.2926 0.2551 0.2237 0.1992 
85.0 0.4254 0.3617 0.3084 0.2682 0.2348 0.2087 
90.0 0.4539 0.3866 0.3299 0.2867 0.2502 0.2214 
95.0 0.5003 0.4283 0.3660 0.3167 0.2755 0.2431 
97.5 0.5442 0.4695 0.4031 0.3470 0.3012 0.2654 
99.0 0.6060 0.5209 0.4473 0.3871 0.3381 0.2956 

Percentiles are obtained by GAUSS from 100000 iteration, 

m denotes number of 1(1) regressors. 
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Table 16 Empirical Size of LMi, LMu» and SBDH 

DGP : «« = [ Q 2 °0'l ] «<-i + e«, A®, = e3t) e, = HdN(0, E). 

Single Equation Test System of Equations Test 
(a) Standard 

H
 

II i-»
 

o
 

o
 

LMi 0.14 0.28 
LMu 0.02 0.02 

SBDH 0.23 0.28 
T = 200 LMi 0.11 0.26 

LMu 0.02 0.02 
SBDH 0.19 0.23 o

 
o
 II LMi 0.09 0.24 

LMu 0.03 0.04 
SBDH 0.16 0.19 

(b) Demeaned 
T = 100 LMi 0.00 0.05 

LMu 0.00 0.00 
SBDHT 0.11 0.17 
SBDHB 0.26 0.33 

II S3
 

O
 

o
 

LMI 0.00 0.07 
LMU 0.00 0.01 

SBDHT 0.09 0.09 
SBDHB 0.21 0.25 o

 
o
 II H
 LMI 0.01 0.10 

LMU 0.01 0.02 
SBDHT 0.06 0.06 
SBDHB 0.16 0.21 

(b) Demeaned and Detrended o
 

©
 

rH II H
 LMI 0.00 0.05 

LMu 0.00 0.00 
SBDHT 0.20 0.38 
SBDHB 0.36 " 0.52 

T = 200 LMI 0.00 0.09 
LMu 0.00 0.01 

SBDHT 0.15 0.20 
SBDHB 0.18 0.37 

T = 400 LMI 0.00 0.11 
LMU 0.00 0.02 

SBDHT 0.09 0.10 
SBDHB 0.19 0.27 
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Table 17 Empirical Power of LMi, LMu» and SBDH 

nrP • „ - [ L0 °-° ' DGP . ti< - 0 2 0 g ««-1 + fit) = e2<, ft = iidN(0, E). 

Single Equation Test System of Equations Test 
(a) Standard 

•9
 

II h-*
 

o
 

o
 

LMI 0.41 0.59 
LMn 0.12 0.23 

SBDH 0.54 0.54 
T = 200 LMi 0.50 0.71 

LMu 0.18 0.43 
SBDH 0.70 0.67 

H
 

II o
 

o
 

LMi 0.64 0.86 
LMu 0.26 0.67 

SBDH 0.88 0.84 
(b) Demeaned 

T = 100 LMi 0.02 0.15 
LMu 0.00 0.00 

SBDHT 0.38 0.41 
SBDHB 0.66 0.62 

T = 200 LMI 0.13 0.44 
LMu 0.00 0.08 

SBDHT 0.69 0.59 
SBDHB 0.84 0.75 o

 
o
 II H
 LMI 0.31 0.76 

LMu 0.03 0.41 
SBDHT 0.91 0.83 
SBDHB 0.96 0.91 

(b) Demeaned and Detrended o
 

o
 

H
 II EH 

LMI 0.00 0.11 
LMu 0.00 0.00 

SBDHT 0.39 0.54 
SBDHB 0.68 0.74 

T = 200 LMI 0.03 0.37 
LMu 0.00 0.05 

SBDHT 0.68 0.59 
SBDHB 0.85 0.79 o

 
o
 II EH 

LMI 0.17 0.75 
LMu 0.00 0.36 

SBDHT 0.92 0.83 
SBDHB 0.96 0.90 
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Table 18 Empirical Size of LMi, LMu, and SBDH 

dgp : Si «t-1 + fit. = e2<, c< = UdN(0, E). 

Single Equation Test System of Equations Test 
(a) Standard 

T = 100 LMi 0.38 0.58 
LMu 0.12 0.21 

SBDH 0.51 0.54 
T = 200 LMi 0.50 0.73 

LMu 0.17 0.42 
SBDH 0.69 0.68 

•3
 

II o
 

o
 

LMi 0.64 0.87 
LMu 0.25 0.68 

SBDH 0.88 0.85 
(b) Demeaned 

II •-»
 

o
 

o
 

LMi 0.02 0.14 
LMu 0.00 0.00 

SBDHT 0.33 0.41 
SBDHB 0.62 0.62 

H
 

II to
 

o
 

o
 

LMI 0.12 0.44 
LMU 0.00 0.08 

SBDHT 0.66 0.60 
SBDHB 0.84 0.76 o

 
o
 

Tfl II 

LMI 0.31 0.76 
LMu 0.03 0.40 

SBDHT 0.90 0.83 
SBDHB 0.96 0.91 

(b) Demeaned and Detrended 
T = 100 LMI 0.00 0.09 

LMU 0.00 0.00 
SBDHT 0.37 0.60 
SBDHB 0.66 0.80 o

 
o
 

cs II 

LMI 0.03 0.36 
LMU 0.00 0.05 

SBDHT 0.65 0.65 
SBDHB 0.84 0.84 

h3
 

II tb- o
 

o
 

LMI 0.16 0.74 
LMu 0.00 0.33 

SBDHT 0.92 0.87 
SBDHB 0.97 0.94 

1. Fraction of rejection out of 5000 iterations. 

2. Quadratic kernel is used for long run variance estimation. 
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Table 19 Empirical Percentiles (Model 1) 

A Percentile LMi LMu SBDHi SBDHu 
A = 0.25 0.9000 0.2491 9.5635 0.0910 0.2091 

0.9500 0.2498 11.4752 0.1113 0.2720 
0.9750 0.2499 13.0953 0.1337 0.3339 
0.9900 0.2500 15.3200 0.1630 0.4285 

A = 0.33 0.9000 0.2492 9.6858 0.0876 0.1806 
0.9500 0.2498 11.6306 0.1074 0.2303 
0.9750 0.2500 13.3553 0.1284 0.2738 
0.9900 0.2500 15.6005 0.1568 0.3447 

A = 0.41 0.9000 0.2492 9.6388 0.0887 0.1593 
0.9500 0.2498 11.5143 0.1096 0.1977 
0.9750 0.2499 13.2342 0.1299 0.2373 
0.9900 0.2500 15.2807 0.1589 0.2953 

A = 0.49 0.9000 0.2492 9.5871 0.0936 0.1553 
0.9500 0.2498 11.3977 0.1155 0.1913 
0.9750 0.2500 13.1855 0.1393 0.2283 
0.9900 0.2500 15.1990 0.1729 0.2718 

A = 0.59 0.9000 0.2494 9.3981 0.1043 0.1615 
0.9500 0.2498 11.2113 0.1329 0.2048 
0.9750 0.2500 13.0874 0.1624 0.2470 
0.9900 0.2500 15.0692 0.2032 0.3120 

A = 0.63 0.9000 0.2493 9.2139 0.1114 0.1692 
0.9500 0.2498 11.1312 0.1402 0.2175 
0.9750 0.2500 12.8281 0.1743 0.2695 
0.9900 0.2500 15.0348 0.2164 0.3352 
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Table 20 Empirical Percentiles (Model 2) 

A Percentile LMi LMu SBDHi SBDHu 
A = 0.25 0.9000 0.2495 12.5206 0.0575 0.0846 

0.9500 0.2499 14.5150 0.0689 0.1025 
0.9750 0.2500 16.3454 0.0794 0.1201 
0.9900 0.2500 18.7922 0.0931 0.1425 

A = 0.33 0.9000 0.2495 12.2511 0.0625 0.0888 
0.9500 0.2499 14.3290 0.0753 0.1071 
0.9750 0.2500 16.3372 0.0884 0.1273 
0.9900 0.2500 18.7455 0.1092 0.1506 

A = 0.41 0.9000 0.2495 11.8274 0.0753 0.0992 
0.9500 0.2499 13.9307 0.0941 0.1260 
0.9750 0.2500 15.6970 0.1162 0.1518 
0.9900 0.2500 18.0947 0.1451 0.1903 

A = 0.49 0.9000 0.2491 11.6614 0.0742 0.1059 
0.9500 0.2498 13.6926 0.0931 0.1356 
0.9750 0.2499 15.7077 0.1116 0.1653 
0.9900 0.2500 17.8886 0.1342 0.2120 

A = 0.59 0.9000 0.2493 12.3129 0.0600 0.1006 
0.9500 0.2498 14.3560 0.0716 0.1253 
0.9750 0.2500 16.4527 0.0830 0.1527 
0.9900 0.2500 18.7032 0.0972 0.1842 

A = 0.63 0.9000 0.2494 12.4516 0.0582 0.0954 
0.9500 0.2498 14.4078 0.0689 0.1176 
0.9750 0.2500 16.5541 0.0809 0.1379 
0.9900 0.2500 18.8471 0.0944 0.1651 
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Table 21 Empirical Percentiles (Model 3) 

A Percentile LMi LMu SBDHi SBDHu 
A = 0.25 0.9000 0.2494 12.5751 0.0596 0.0845 

0.9500 0.2498 14.6485 0.0715 0.1041 
0.9750 0.2500 16.5370 0.0820 0.1232 
0.9900 0.2500 19.2334 0.0978 0.1484 

A = 0.33 0.9000 0.2494 12.7024 0.0572 0.0762 
0.9500 0.2499 14.8097 0.0686 0.0937 
0.9750 0.2500 16.7931 0.0797 0.1111 
0.9900 0.2500 19.0340 0.0926 0.1326 

A = 0.41 0.9000 0.2495 12.7977 0.0566 0.0718 
0.9500 0.2499 14.8648 0.0674 0.0864 
0.9750 0.2500 16.7080 0.0787 0.1031 
0.9900 0.2500 19.1433 0.0927 0.1227 

A = 0.49 0.9000 0.2494 12.7212 0.0578 0.0698 
0.9500 0.2499 14.7501 0.0683 0.0843 
0.9750 0.2500 16.7291 0.0799 0.0979 
0.9900 0.2500 19.2525 0.0942 0.1179 

A = 0.59 0.9000 0.2495 12.6197 0.0610 0.0715 
0.9500 0.2499 14.6120 0.0719 0.0864 
0.9750 0.2500 16.5052 0.0856 0.1023 
0.9900 0.2500 19.4287 0.1027 0.1226 

A = 0.63 0.9000 0.2495 12.4661 0.0627 0.0739 
0.9500 0.2499 14.4915 0.0745 0.0898 
0.9750 0.2500 16.5177 0.0891 0.1064 
0.9900 0.2500 19.1182 0.1066 0.1278 



www.manaraa.com

Table 22 Empirical Percentiles (Model 4) 

A Percentile LMi LMu SBDHi SBDHu 
A = 0.25 0.9000 0.2495 14.8190 0.0475 0.0724 

0.9500 0.2499 17.1342 0.0569 0.0896 
0.9750 0.2500 19.0986 0.0665 0.1057 
0.9900 0.2500 21.9067 0.0788 0.1295 

A = 0.33 0.9000 0.2495 15.2833 0.0434 0.0624 
0.9500 0.2499 17.4615 0.0510 0.0757 
0.9750 0.2500 19.5424 0.0585 0.0876 
0.9900 0.2500 22.3166 0.0692 0.1062 

A = 0.41 0.9000 0.2496 15.5408 0.0410 0.0551 
0.9500 0.2499 17.8259 0.0474 0.0656 
0.9750 0.2500 19.6557 0.0538 0.0765 
0.9900 0.2500 22.3313 0.0624 0.0899 

A = 0.49 0.9000 0.2496 15.5549 0.0407 0.0528 
0.9500 0.2499 17.6852 0.0472 0.0616 
0.9750 0.2500 19.7133 0.0539 0.0710 
0.9900 0.2500 22.4518 0.0631 0.0822 

A = 0.59 0.9000 0.2497 15.2923 0.0447 0.0557 
0.9500 0.2499 17.5324 0.0525 0.0648 
0.9750 0.2500 19.5397 0.0605 0.0760 
0.9900 0.2500 22.3962 0.0720 0.0903 

A = 0.63 0.9000 0.2497 15.0752 0.0476 0.0589 
0.9500 0.2499 17.3547 0.0559 0.0696 
0.9750 0.2500 19.4354 0.0646 0.0814 
0.9900 0.2500 22.0905 0.0795 0.0960 

These tables are obtained by GAUSS from 10000 iteration 
for univariate series under known changing point. 

Model 1: pure level shift (p=0) 
Model 2: partial level shift (p=l) 
Model 3: pure level/trend shift under continuity (p=l) 
Model 4: pure level/trend shift unrestricted (p=l) 
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Table 23 Empirical Percentiles (Model 1) 

A Percentile LMi LMu SBDHi SBDHu 
A = 0.25 0.8000 0.5586 18.2713 0.1350 0.2875 

0.8500 0.5932 19.4805 0.1462 0.3235 
0.9000 0.6489 21.0771 0.1617 0.3665 
0.9500 0.7597 23.5902 0.1884 0.4490 
0.9750 0.8889 25.8806 0.2111 0.5262 
0.9900 1.0860 28.8238 0.2489 0.6289 

A = 0.33 0.8000 0.5566 18.3554 0.1312 0.2513 
0.8500 0.5883 19.6290 0.1415 0.2780 
0.9000 0.6389 21.1676 0.1565 0.3145 
0.9500 0.7435 23.8834 0.1796 0.3732 
0.9750 0.8582 26.0735 0.2050 0.4322 
0.9900 1.0354 28.9779 0.2386 0.5182 

A = 0.41 0.8000 0.5561 18.3666 0.1316 0.2312 
0.8500 0.5870 19.5517 0.1422 0.2517 
0.9000 0.6346 21.0995 0.1570 0.2808 
0.9500 0.7261 23.8045 0.1829 0.3308 
0.9750 0.8361 26.0112 0.2066 0.3746 
0.9900 1.0312 28.9429 0.2417 0.4410 

A = 0.49 0.8000 0.5599 18.0949 0.13,70 0.2211 
0.8500 0.5910 19.2929 0.1482 0.2397 
0.9000 0.6398 20.9688 0.1648 0.2684 
0.9500 0.7248 23.6388 0.1942 0.3143 
0.9750 0.8376 25.7439 0.2186 0.3538 
0.9900 1.0007 28.6544 0.2554 0.4118 

A = 0.59 0.8000 0.5656 17.7508 0.1500 0.2277 
0.8500 0.5985 18.9456 0.1642 0.2487 
0.9000 0.6510 20.5707 0.1833 0.2796 
0.9500 0.7526 23.0973 0.2167 0.3332 
0.9750 0.8620 25.2478 0.2486 0.3857 
0.9900 1.0275 27.8951 0.2940 0.4450 

A = 0.63 0.8000 0.5708 17.5077 0.1571 0.2374 
0.8500 0.6050 18.7908 0.1717 0.2615 
0.9000 0.6611 20.2266 0.1933 0.2931 
0.9500 0.7716 22.9469 0.2294 0.3529 
0.9750 0.8780 25.1282 0.2637 0.4070 
0.9900 1.0525 27.8680 0.3133 0.4828 
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Table 24 Empirical Percentiles (Model 2) 

A Percentile LMi LMu SBDHi SBDHu 
X = 0.25 0.8000 0.5418 23.2017 0.0891 0.1278 

0.8500 0.5671 24.4456 0.0951 0.1372 
0.9000 0.6041 26.2197 0.1031 0.1491 
0.9500 0.6750 29.0789 0.1155 0.1703 
0.9750 0.7527 31.3315 0.1278 0.1917 
0.9900 0.8678 33.8508 0.1459 0.2201 

X = 0.33 0.8000 0.2481 10.0997 0.0502 0.0705 
0.8500 0.2489 11.0314 0.0559 0.0780 
0.9000 0.2495 12.2511 0.0625 0.0888 
0.9500 0.2499 14.3290 0.0753 0.1071 
0.9750 0.2500 16.3372 0.0884 0.1273 
0.9900 0.2500 18.7455 0.1092 0.1506 

X = 0.41 0.8000 0.5361 21.9378 0.1098 0.1455 
0.8500 0.5554 23.2579 0.1188 0.1584 
0.9000 0.5850 25.0147 0.1329 0.1762 
0.9500 0.6445 27.7221 0.1556 0.2083 
0.9750 0.7123 30.0386 0.1806 0.2394 
0.9900 0.8096 33.2198 0.2117 0.2743 

A = 0.49 0.8000 0.5201 21.5139 0.1091 0.1533 
0.8500 0.5380 22.8187 0.1181 0.1681 
0.9000 0.5700 24.5500 0.1319 0.1899 
0.9500 0.6317 27.5603 0.1546 0.2260 
0.9750 0.6865 30.0332 0.1775 0.2580 
0.9900 0.7807 33.2174 0.2068 0.3072 

A = 0.59 0.8000 0.5336 22.7554 0.0919 0.1462 
0.8500 0.5542 24.0740 0.0981 0.1586 
0.9000 0.5902 25.9043 0.1064 0.1764 
0.9500 0.6562 28.5789 0.1208 0.2058 
0.9750 0.7262 31.0379 0.1329 0.2364 
0.9900 0.8545 33.7955 0.1507 0.2751 

A = 0.63 0.8000 0.5399 23.0548 0.0897 0.1398 
0.8500 0.5632 24.3656 0.0961 0.1507 
0.9000 0.5983 26.1481 0.1035 0.1655 
0.9500 0.6666 28.8017 0.1172 0.1912 
0.9750 0.7386 31.0472 0.1292 0.2165 
0.9900 0.8458 33.9604 0.1456 0.2512 



www.manaraa.com

Table 25 Empirical Percentiles (Model 3) 

A Percentile LMj LMn SBDHi SBDHII 
A = 0.25 0.8000 0.5450 23.2880 0.0902 0.1243 

0.8500 0.5685 24.5385 0.0961 0.1342 
0.9000 0.6051 26.3737 0.1051 0.1486 
0.9500 0.6794 29.0122 0.1192 0.1708 
0.9750 0.7663 31.2075 0.1330 0.1960 
0.9900 0.8871 34.9753 0.1510 0.2279 

A = 0.33 0.8000 0.5428 23.4794 0.0881 0.1143 
0.8500 0.5669 24.7840 0.0942 0.1229 
0.9000 0.6022 26.5431 0.1020 0.1355 
0.9500 0.6729 29.1611 0.1138 0.1554 
0.9750 0.7517 31.6765 0.1285 0.1752 
0.9900 0.8704 34.6219 0.1450 0.2031 

A = 0.41 0.8000 0.5425 23.5572 0.0875 0.1081 
0.8500 0.5660 24.9123 0.0932 0.1154 
0.9000 0.6017 26.6049 0.1011 0.1270 
0.9500 0.6704 29.3589 0.1133 0.1453 
0.9750 0.7445 31.6091 0.1263 0.1624 
0.9900 0.8506 34.4239 0.1441 0.1878 

A = 0.49 0.8000 0.5441 23.4771 0.0883 0.1055 
0.8500 0.5660 24.8415 0.0943 0.1128 
0.9000 0.6012 26.5665 0.1023 0.1239 
0.9500 0.6716 29.2091 0.1154 0.1413 
0.9750 0.7461 31.5173 0.1293 0.1569 
0.9900 0.8546 34.3038 0.1459 0.1807 

A = 0.59 0.8000 0.5472 23.2517 0.0922 0.1077 
0.8500 0.5715 24.5672 0.0988 0.1161 
0.9000 0.6062 26.2899 0.1069 0.1266 
0.9500 0.6803 28.8406 0.1224 0.1444 
0.9750 0.7546 31.2180 0.1370 0.1633 
0.9900 0.8693 34.3490 0.1564 0.1902 

A = 0.63 0.8000 0.5492 23.0769 0.0943 0.1104 
0.8500 0.5745 24.3830 0.1009 0.1189 
0.9000 0.6097 26.1462 0.1102 0.1301 
0.9500 0.6830 28.7342 0.1260 0.1500 
0.9750 0.7593 31.0806 0.1421 0.1689 
0.9900 0.8878 34.0951 0.1619 0.1970 
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Table 26 Empirical Percentiles (Model 4) 

A Percentile LMi LMn SBDHi SBDHn 
A = 0.25 0.8000 0.5349 27.1668 0.0730 0.1073 

0.8500 0.5555 28.5429 0.0777 0.1161 
0.9000 0.5874 30.4630 0.0843 0.1278 
0.9500 0.6491 33.2468 0.0953 0.1460 
0.9750 0.7173 36.1113 0.1052 0.1651 
0.9900 0.8334 39.3280 0.1204 0.1938 

A = 0.33 0.8000 0.5328 28.2005 0.0673 0.0942 
0.8500 0.5525 29.5901 0.0714 0.1011 
0.9000 0.5797 31.4751 0.0770 0.1105 
0.9500 0.6352 34.5513 0.0866 0.1256 
0.9750 0.6983 36.9969 0.0958 0.1400 
0.9900 0.7914 40.1436 0.1059 0.1608 

A = 0.41 0.8000 0.5332 28.6150 0.0645 0.0859 
0.8500 0.5500 30.1315 0.0686 0.0920 
0.9000 0.5787 31.9422 0.0738 0.0996 
0.9500 0.6307 34.8298 0.0820 0.1118 
0.9750 0.6865 37.7532 0.0892 0.1245 
0.9900 0.7653 40.8208 0.0991 0.1413 

A = 0.49 0.8000 0.5363 28.6430 0.0652 0.0833 
0.8500 0.5544 30.1026 0.0691 0.0879 
0.9000 0.5833 31.9522 0.0742 0.0945 
0.9500 0.6377 35.0183 0.0825 0.1058 
0.9750 0.6931 37.5218 0.0899 0.1172 
0.9900 0.7792 40.8163 0.1012 0.1314 

A = 0.59 0.8000 0.5447 28.0230 0.0700 0.0865 
0.8500 0.5637 29.4415 0.0747 0.0921 
0.9000 0.5931 31.2400 0.0804 0.0995 
0.9500 0.6469 34.1896 0.0911 0.1119 
0.9750 0.7052 36.8433 0.1014 0.1246 
0.9900 0.8111 39.8142 0.1140 0.1406 

A = 0.63 0.8000 0.5478 27.5203 0.0730 0.0895 
0.8500 0.5690 28.9521 0.0779 0.0958 
0.9000 0.5990 30.7865 0.0843 0.1041 
0.9500 0.6565 33.7400 0.0958 0.1182 
0.9750 0.7155 36.1956 0.1069 0.1307 
0.9900 0.8186 39.3000 0.1227 0.1502 

These tables are obtained by GAUSS from 10000 iteration 
for bivariate series under known changing point. 
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Table 27 Empirical Percentiles for Sup Tests (Model 1) 

n Percentile LMi LMu SBDHi SBDHn 
n = 1 0.800 0.2500 10.2701 0.1195 0.2938 

0.850 0.2500 11.2674 0.1356 0.3289 
0.900 0.2500 12.4935 0.1588 0.3770 
0.950 0.2500 14.4704 0.1987 0.4646 
0.975 0.2500 16.3858 0.2424 0.5526 
0.990 0.2500 18.8052 0.2982 0.6690 

S
 

II to
 

0.800 0.7005 21.8698 0.2196 0.4813 
0.850 0.7550 23.1178 0.2409 0.5253 
0.900 0.8375 24.6907 0.2711 0.5873 
0.950 0.9978 27.2272 0.3215 0.6891 
0.975 1.1763 29.6819 0.3740 0.7892 
0.990 1.4634 32.5821 0.4398 0.9181 eo II a 0.800 1.2970 36.7900 0.3134 0.6471 
0.850 1.4014 38.3025 0.3393 0.6985 
0.900 1.5492 40.2897 0.3742 0.7661 
0.950 1.8291 43.2363 0.4312 0.8802 
0.975 2.1340 46.0330 0.4855 0.9887 
0.990 2.5669 49.1847 0.5595 1.1346 

n = 4 0.800 2.0233 55.3425 0.4054 0.8067 
0.850 2.1717 57.1543 0.4345 0.8632 
0.900 2.3851 59.5519 0.4738 0.9400 
0.950 2.7735 63.1246 0.5357 1.0625 
0.975 3.1798 66.3569 0.5938 1.1768 
0.990 3.7945 70.1290 0.6742 1.3162 

n = 5 0.800 2.8821 77.5691 0.4954 0.9619 
0.850 3.0875 79.5690 0.5276 1.0230 
0.900 3.3765 82.2933 0.5701 1.1034 
0.950 3.8949 86.2202 0.6384 1.2404 
0.975 4.4437 89.7318 0:6994 1.3682 
0.990 5.1828 94.3984 0.7837 1.5153 



www.manaraa.com

Table 28 Empirical Percentiles for Sup Tests (Model 2) 

n Percentile LMi LMn SBDHi SBDHn 
n = 1 0.800 0.2500 14.5149 0.0712 0.1159 

0.850 0.2500 15.5144 0.0794 0.1275 
0.900 0.2500 16.9126 0.0909 0.1436 
0.950 0.2500 19.1359 0.1107 0.1716 
0.975 0.2500 21.0785 0.1316 0.2001 
0.990 0.2500 23.6560 0.1575 0.2391 

n = 2 0.800 0.6632 27.8936 0.1322 0.1956 
0.850 0.7019 29.2155 0.1427 0.2102 
0.900 0.7589 30.8900 0.1573 0.2298 
0.950 0.8670 33.5073 0.1818 0.2639 
0.975 0.9857 35.8807 0.2059 0.2958 
0.990 1.1709 38.7996 0.2377 0.3388 

p
 II C

O
 

0.800 1.1553 44.8072 0.1869 0.2696 
0.850 1.2223 46.3811 0.1987 0.2863 
0.900 1.3129 48.4144 0.2156 0.3085 
0.950 1.4773 51.6770 0.2432 0.3455 
0.975 1.6463 54.5468 0.2698 0.3835 
0.990 1.8884 58.0719 0.3061 0.4302 

n = 4 0.800 1.7175 65.2120 0.2394 0.3412 
0.850 1.8071 67.0840 0.2523 0.3596 
0.900 1.9336 69.3687 0.2707 0.3846 
0.950 2.1577 73.1376 0.3004 0.4251 
0.975 2.3849 76.4737 0.3290 0.4643 
0.990 2.6885 80.2510 0.3667 0.5190 

n = 5 0.800 2.3551 89.1968 0.2924 0.4097 
0.850 2.4744 91.4069 0.3066 0.4299 
0.900 2.6351 94.0622 0.3262 0.4572 
0.950 2.9252 98.4637 0.3575 0.5018 
0.975 3.2159 102.2493 0.3873 0.5430 
0.990 3.5917 107.0198 0.4267 0.5963 
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Table 29 Empirical Percentiles for Sup Tests (Model 3) 

n Percentile LMi LMn SBDHi SBDHn 
n = 1 0.800 0.2500 12.6307 0.0645 0.0900 

0.850 0.2500 13.6553 0.0713 0.1002 
0.900 0.2500 14.9880 0.0809 0.1145 
0.950 0.2500 17.1639 0.0970 0.1386 
0.975 0.2500 19.3133 0.1141 0.1637 
0.990 0.2500 22.0483 0.1368 0.1960 

n = 2 0.800 0.6091 26.4891 0.1181 0.1608 
0.850 0.6424 27.7868 0.1269 0.1736 
0.900 0.6932 29.5474 0.1391 0.1912 
0.950 0.7937 32.4234 0.1592 0.2199 
0.975 0.9028 35.0448 0.1789 0.2490 
0.990 1.0736 38.0954 0.2044 0.2878 

II 00
 

0.800 1.0699 43.4910 0.1693 0.2278 
0.850 1.1315 45.1050 0.1793 0.2425 
0.900 1.2196 47.2527 0.1938 0.2626 
0.950 1.3799 50.5990 0.2173 0.2951 
0.975 1.5589 53.6760 0.2386 0.3268 
0.990 1.7992 57.3629 0.2692 0.3687 

II 0.800 1.6118 63.9991 0.2196 0.2929 
0.850 1.7002 65.9334 0.2314 0.3093 
0.900 1.8287 68.4353 0.2473 0.3310 
0.950 2.0475 72.4165 0.2721 0.3662 
0.975 2.2823 76.0654 0.2951 0.4009 
0.990 2.6039 80.2543 0.3229 0.4425 

n = 5 0.800 2.2323 88.1603 0.2691 0.3556 
0.850 2.3514 90.3943 0.2818 0.3732 
0.900 2.5217 93.3097 0.2977 0.3970 
0.950 2.8129 97.7634 0.3255 0.4363 
0.975 3.1130 101.7885 0.3513 0.4735 
0.990 3.5512 106.6342 0.3849 0.5203 
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Table 30 Empirical Percentiles for Sup Tests (Model 4) 

n Percentile LMJ LMIJ SBDHJ SBDHU 
n = 1 0.800 0.2500 16.9971 0.0587 0.0932 

0.850 0.2500 18.0852 0.0647 0.1023 
0.900 0.2500 19.6210 0.0728 0.1156 
0.950 0.2500 21.9213 0.0872 0.1382 
0.975 0.2500 24.0336 0.1027 0.1602 
0.990 0.2500 26.8095 0.1224 0.1893 

n = 2 0.800 0.7046 31.5807 0.1388 0.1589 
0.850 0.7521 32.9476 0.1488 0.1706 
0.900 0.8224 34.7221 0.1625 0.1868 
0.950 0.9572 37.5606 0.1840 0.2135 
0.975 1.0991 40.0479 0.2032 0.2401 
0.990 1.3269 43.0335 0.2290 0.2718 

n = 3 0.800 1.2506 50.6911 0.1966 0.2204 
0.850 1.3324 52.2817 0.2084 0.2339 
0.900 1.4511 54.4116 0.2234 0.2514 
0.950 1.6736 57.6043 0.2479 0.2816 
0.975 1.8979 60.5734 0.2689 0.3106 
0.990 2.2685 64.0251 0.2953 0.3487 

n = 4 0.800 1.8869 72.8866 0.2515 0.2800 
0.850 2.0066 74.8994 0.2636 0.2951 
0.900 2.1806 77.4186 0.2790 0.3158 
0.950 2.4818 81.3086 0.3048 0.3487 
0.975 2.8055 84.9986 0.3271 0.3778 
0.990 3.2935 89.4487 0.3575 0.4182 

n = 5 0.800 2.6328 98.9963 0.3054 0.3401 
0.850 2.7935 101.2260 0.3182 0.3562 
0.900 3.0171 104.0339 0.3350 0.3782 
0.950 3.4283 108.3464 0.3611 0.4128 
0.975 3.8511 112.2954 0.3866 0.4442 
0.990 4.4267 117.1247 0.4144 0.4862 

1. Percentiles are obtained by GAUSS/Fortran from 50000 iteration 
where A e (0.15,0.85) and interval 0.02. 

2. Model 1: pure level shift (p=0) 
Model 2: partial level shift (p=l) 
Model 3: pure level/trend shift under continuity (p=l) 
Model 4: pure level/trend shift unrestricted (p=l) 
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Table 31 Empirical Power of Sup TeBts 

DGP 1 :««=[ J ;5  J ; j ] «« -x  +  e < l e l~.W(0)n) l f l= [  J ; j j  J®] .  

M LMi LMn SBDHi SBDHn LMi LMn SBDHi SBDHn 
Part(a) Univariate Tests 

univariate tests for xu univariate tests for »21 
T = 100 

1 0.34 0.00 0.93 0.91 0.29 0.00 0.89 0.85 
2 0.14 0.00 0.83 0.79 0.10 0.00 0.77 0.72 
3 0.00 0.00 0.77 0.72 0.00 0.00 0.70 0.65 
4 0.00 0.00 0.77 0.78 0.00 0.00 0.69 0.69 

T = 200 
1 0.67 0.02 0.98 0.97 0.64 0.02 0.97 0.95 
2 0.60 0.00 0.93 0.89 0.55 0.00 0.87 0.80 
3 0.31 0.00 0.92 0.87 0.27 0.00 0.86 0.76 
4 0.23 0.00 0.90 0.87 0.19 0.00 0.81 0.76 

T = 400 
1 0.89 0.25 1.00 1.00 0.88 0.24 0.99 0.99 
2 0.87 0.08 0.99 0.98 0.08 0.07 0.95 0.93 
3 0.69 0.03 0.98 0.97 0.66 0.02 0.95 0.92 
4 0.60 0.01 0.98 0.97 0.55 0.00 0.95 0.91 

Part(b) Univariate and Multivariate Tests 
univariate tests multivariate tests 

T = 100 
1 0.38 0.00 0.96 0.94 0.88 0.19 0.93 0.90 
2 0.17 0.00 0.92 0.89 0.65 0.04 0.85 0.79 
3 0.00 0.00 0.87 0.84 0.59 0.05 0.79 0.75 
4 0.00 0.00 0.89 0.89 0.44 0.02 0.70 0.80 

T = 200 
1 0.71 0.02 0.99 0.98 0.97 0.62 0.98 0.97 
2 0.65 0.00 0.95 0.92 0.90 0.35 0.93 0.91 
3 0.35 0.00 0.94 0.91 0.85 0.33 0.91 0.88 
4 0.26 0.00 0.94 0.91 0.82 0.29 0.89 0.90 

T = 400 
1 0.91 0.27 1.00 1.00 1.00 0.90 1.00 1.00 
2 0.89 0.09 0.99 0.98 0.98 0.78 0.98 0.97 
3 0.72 0.03 0.99 0.98 0.97 0.65 0.98 0.97 
4 0.63 0.01 0.99 0.98 0.97 0.72 0.98 0.97 
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Table 32 Empirical Power of Sup Tests 

DGP 2 : *, = [ J;J *,_i + et, e, ~ iidN(0, £*),«=[ 1.0 
0.5 

0.5 
1.5 

Af LMi LMn SBDHi SBDHn LMi LMn SBDHi SBDHn 
Part(a) Univariate Tests 

univariate tests for xu univariate tests for x?t 
T = 100 • 

1 0.42 0.00 0.96 0.95 0.01 0.00 0.28 0.20 
2 0.22 0.00 0.91 0.88 0.00 0.00 0.34 0.28 
3 0.01 0.00 0.84 0.82 0.00 0.00 0.30 0.23 
4 0.00 0.00 0.86 0.89 0.00 0.00 0.36 0.30 

T = 200 
1 0.71 0.03 0.99 0.99 0.00 0.00 0.07 0.06 
2 0.68 0.00 0.97 0.95 0.00 0.00 0.13 0.10 
3 0.38 0.00 0.94 0.91 0.00 0.00 0.11 0.11 
4 0.28 0.00 0.96 0.94 0.00 0.00 0.14 0.14 

T = 400 
1 0.89 0.27 1.00 1.00 0.00 0.00 0.02 0.07 
2 0.90 0.10 0.99 0.99 0.00 0.00 0.06 0.06 
3 0.73 0.04 0.99 0.99 0.00 0.00 0.04 0.07 
4 0.64 0.01 0.99 0.99 0.00 0.00 0.06 0.08 

Part(b) Univariate and Multivariate Tests 
univariate tests multivariate tests 

T = 100 
1 0.43 0.00 0.96 0.96 0.94 0.52 0.94 0.92 
2 0.23 0.00 0.93 0.91 0.82 0.20 0.89 0.82 
3 0.01 0.00 0.88 0.85 0.75 0.30 0.83 0.72 
4 0.00 0.00 0.91 0.91 0.66 0.16 0.75 0.82 

T = 200 
1 0.71 0.03 0.99 0.99 0.97 0.91 0.96 0.95 
2 0.68 0.00 0.97 0.95 0.89 0.74 0.89 0.85 
3 0.38 0.00 0.94 0.92 0.87 0.76 0.85 0.79 
4 0.28 0.00 0.96 0.95 0.85 0.67 0.84 0.84 

T = 400 
1 0.89 0.27 1.00 1.00 1.00 0.99 0.99 0.99 
2 0.90 0.10 0.99 0.99 0.98 0.96 0.97 0.96 
3 0.73 0.04 0.99 0.99 0.97 0.96 0.96 0.94 
4 0.64 0.01 0.99 0.99 0.97 0.96 0.96 0.95 
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Table 33 Empirical Size of Sup Tests 

DGP 3 : xt = 0.8 0.0 
0.2 0.8 

xt-i + , c« ~ iidN(0, Q),Q= 1.0 0.5 
0.5 1.5 

M LMi LMn SBDHi SBDHn LMi LMn SBDHi SBDHn 
, Part(a) Univariate Tests 

univariate tests for univariate tests for xu 
T = 100 

1 0.01 0.00 0.27 0.18 0.03 0.00 0.45 0.35 
2 0.00 0.00 0.34 0.28 0.01 0.00 0.47 0.40 
3 0.00 0.00 0.30 0.25 0.00 0.00 0.40 0.32 
4 0.00 0.00 0.35 0.30 0.00 0.00 0.48 0.42 

T = 200 
1 0.00 0.00 0.08 0.06 0.02 0.00 0.20 0.12 
2 0.00 0.00 0.13 0.10 0.02 0.00 0.19 0.14 
3 0.00 0.00 0.09 0.10 0.01 0.00 0.19 0.13 
4 0.00 0.00 0.14 0.13 0.00 0.00 0.20 0.16 

T = 400 
1 0.00 0.00 0.03 0.06 0.00 0.00 0.03 0.05 
2 0.00 0.00 0.07 0.08 0.00 0.00 0.05 0.05 
3 0.00 0.00 0.04 0.09 0.00 0.00 0.03 0.06 
4 0.00 0.00 0.06 0.09 0.00 0.00 0.04 0.07 

Part(b) Univariate and Multivariate Tests 
univariate tests multivariate tests 

T = 100 
1 0.03 0.00 0.54 0.44 0.38 0.05 0.44 0.32 
2 0.01 0.00 0.62 0.54 0.28 0.01 0.47 0.38 
3 0.00 0.00 0.54 0.46 0.26 0.01 0.41 0.36 
4 0.00 0.00 0.64 0.57 0.19 *0.01 0.34 0.45 

T = 200 
1 0.02 0.00 0.24 0.17 0.23 0.04 0.19 0.13 
2 0.02 0.00 0.27 0.21 0.20 0.02 0.23 0.19 
3 0.01 0.00 0.24 0.20 0.21 0.01 0.22 0.21 
4 0.00 0.00 0.30 0.25 0.17 0.01 0.14 0.26 

T = 400 
1 0.00 0.00 0.05 0.09 0.12 0.01 0.04 0.09 
2 0.00 0.00 0.10 0.11 0.11 0.01 0.10 0.12 
3 0.00 0.00 0.06 0.12 0.13 0.01 0.08 0.15 
4 0.00 0.00 0.09 0.13 0.08 0.01 0.02 0.17 

1. Size and power are obtained by GAUSS from 2000 iteration. 

2. Quadratic kernel is used for longrun variance estimation. 

3. A € (0.15,0.85) at interval 0.02. 
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Table 34 Empirical Size of LMi, LMn and SBDH 

F 0-8 0.0 1 , .. ,AT/n m n T 1.0 0.5 
x< =  [ 0.2  o . 8  J a ? < - 1  +  e , i e < ~ , , d ^ 0 , ^ ' n = [ 0 . 5  1 . 5 .  

Univariate tests Multivariate tests 
8* h 8* h 

a. Standard 
T=100 LMi 0.21 0.09 0.56 0.07 

LMn 0.13 0.01 0.06 0.00 
SBDH 0.21 0.07 0.50 0.05 

T=200 LMi 0.09 0.11 0.27 0.11 
LMu 0.03 0.03 0.03 0.00 

SBDH 0.09 0.10 0.24 0.10 
T=400 LMi 0.08 0.10 0.04 0.11 

LMn 0.05 0.05 0.00 0.04 
SBDH 0.08 0.10 0.04 0.11 

b. Demeaned o
 

o
 

H
 

II H
 LMi 0.17 0.07 0.24 0.07 

LMn 0.00 0.00 0.06 0.00 
SBDHT 0.36 0.03 0.24 0.03 
SBDHB 0.34 0.09 0.25 0.08 

T=200 LMI 0.11 0.07 0.10 0.11 
LMn 0.01 0.00 0.01 0.00 

SBDHT 0.15 0.09 0.07 0.08 
SBDHB 0.16 0.12 0.10 0.11 

T=400 LMI 0.09 0.09 0.09 0.13 
LMn 0.02 0.02 0.01 0.02 

SBDHt 0.08 0.11 0.07 0.10 
SBDHB 0.10 0.12 0.10 0.13 

c. Demeaned and detrended 
T=100 LMI 0.06 0.06 0.17 0.03 

LMn 0.00 0.00 0.02 0.00 
SBDHT 0.31 0.03 0.27 0.07 
SBDHb 0.30 0.07 0.27 0.13 o

 
o
 

C
* II 

LMI 0.08 0.07 0.10 0.09 
LMn 0.00 0.00 0.01 0.00 

SBDHT 0.13 0.06 0.09 0.08 
SBDHB 0.14 0.10 0.13 0.12 

T=400 LMI 0.08 0.08 0.08 0.12 
LMn 0.00 0.00 0.00 0.00 

SBDHT 0.08 0.11 0.08 0.11 
SBDHB 0.10 0.13 0.11 0.14 
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Table 35 Empirical Power of LMi, LMu and SBDH 

[ 1.0 0.0 1 . .. ,M/n n. n T 1.0 0.5 1 
* < = [ o . 2  0 .8 \ * t - i  +  e t , e t~"dmn) ,n= [ Q 5  l g j .  

Univariate tests Multivariate tests 
8* h 8* h 

a. Standard 
T=100 LMi 0.88 0.60 0.75 0.51 

LMu 0.83 0.10 0.31 0.00 
SBDH 0.86 0.20 0.66 0.17 

II to
 

0
 

0
 

LMi 0.91 0.74 0.87 0.75 
LMu 0.86 0.62 0.48 0.27 

SBDH 0.95 0.53 0.84 0.52 
T=400 LMi 0.94 0.81 0.95 0.84 

LMu 0.88 0.73 0.60 0.79 
SBDH 0.99 0.71 0.94 0.71 

b. Demeaned 
T=100 LMi 0.68 0.02 0.87 0.14 

LMu 0.03 0.00 0.23 0.00 
SBDHT 0.92 0.30 0.92 0.24 
SBDHB 0.91 0.56 0.91 0.54 

T=200 LMI 0.78 0.02 0.95 0.31 
LMu 0.34 0.00 0.61 0.00 

SBDHT 0.98 0.60 0.98 0.60 
SBDHB 0.97 0.70 0.97 0.71 

T=400 LMI 0.85 0.41 0.98 0.65 
LMu 0.53 0.00 0.83 0.04 

SBDHT 1.00 0.79 1.00 0.79 
SBDHB 1.00 0.83 1.00 0.82 

c. Demeaned and detrended 
T=100 LMI 0.14 0.03 0.56 0.05 

LMu 0.00 0.00 0.11 0.00 
SBDHT 0.75 0.12 0.79 0.19 
SBDHB 0.73 0.33 0.78 0.40 

T=200 LMI 0.45 0.03 0.82 0.21 
LMu 0.00 0.00 0.33 0.00 

SBDHT 0.90 0.41 0.91 0.44 
SBDHB 0.88 0.57 0.90 0.61 

T=400 LMI 0.63 0.03 0.95 0.36 
LMu 0.12 0.00 0.61 0.01 

SBDHT 0.98 0.74 0.98 0.73 
SBDHB 0.97 0.82 0.98 0.82 
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Table 36 Empirical Power of LMi, LMu and SBDH 

xt = 1.0 
0.0 

0.2 
0.8 J x t-1 + eu  e t  ~ UdN(0, SI),  = J'® J 

Univariate tests Multivariate tests 
s* H 8* H 

a. Standard o
 

o
 

H
 

II H
 LMi 0.86 0.57 0.78 0.50 

LMn 0.81 0.09 0.21 0.00 
SBDH 0.84 0.20 0.65 0.16 

T=200 LMi 0.90 0.73 0.91 0.76 
LMn 0.85 0.62 0.36 0.57 

SBDH 0.94 0.52 0.84 0.48 
T=400 LMi 0.93 0.80 0.98 0.87 

LMu 0.88 0.73 0.43 0.95 
SBDH 0.99 0.71 0.94 0.68 

b. Demeaned 

h3
 

II h-
» o
 

o
 

LMi 0.69 0.05 0.87 0.28 
LMu 0.03 0.00 0.52 0.00 

SBDHT 0.91 0.28 0.85 0.27 
SBDHB 0.91 0.57 0.84 0.56 

T=200 LMI 0.79 0.06 0.95 0.54 
LMu 0.34 0.00 0.88 0.01 

SBDHT 0.98 0.60 0.95 0.62 
SBDHB 0.98 0.72 0.95 0.73 

T=400 LMI 0.85 0.44 0.99 0.88 
LMn 0.54 0.01 0.98 0.20 

SBDHT 1.00 0.80 0.99 0.80 
SBDHB 1.00 0.82 0.99 0.83 

c. Demeaned and detrended o
 

o
 II H
 LMi 0.19 0.05 0.61 0.12 

LMn 0.00 0.00 0.31 0.00 
SBDHT 0.73 0.12 0.65 0.24 
SBDHB 0.71 0.35 0.65 0.46 

T=200 LMI 0.46 0.05 0.82 0.49 
LMn 0.00 0.00 0.72 0.00 

SBDHT 0.92 0.42 0.83 0.48 
SBDHB 0.90 0.58 0.81 0.62 

T=400 LMI 0.64 0.06 0.96 0.75 
LMu 0.13 0.00 0.94 0.11 

SBDHT 0.99 0.73 0.96 0.73 
SBDHB 0.99 0.81 0.95 0.81 
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Table 37 Test results fot the Kugler-Neusser data 
a. Univariate tests for the null of level-stationarity 

LMi LMn SBDHT SBDHB 
USA 0.3900 0.1617 0.2453 0.4333 
Japan 0.1804 2.2394 0.0816 0.1317 
UK 0.0943 0.8829 0.1095 0.2574 
FRG 0.1872 2.7845 0.0682 0.1170 
France 0.2497 3.3193 0.0752 0.0755 
Switzerland 0.1484 2.3840 0.0638 0.1472 

Critical values at 5% level are 0.2496, 7.9924, 0.2477 and 0.4589 for LMi, LMu, SBDHT and 
SBDHB, respectively. 

b. Multivariate tests for the null of level-stationarity 

LMi LMn SBDHT SBDHB 
All 2.2916 29.7916 0.5682 0.9285 

Critical values at 10% level are 5.0410, 88.1664, 0.8412 and 0.8412 for LMj, LMu, SBDHT and 
SBDHB, respectively. 
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Appendix A 

Proofs for Chapter II 

Lemma A. Let an n xn matrix A be partitioned as A = , where An 
An A12 
A21 A22 

is a constant matrix and A12, A2I and A22 ore random matrices with continuous 

distributions. Suppose that rank(An) = «i, rank(A22) = n2 a.3. and A12A22A21 is 

a random matrix. Then, the inverse of the matrix A exists a.s. 

Proof: 

In the light of a formula for the partitioned inverse, the inverse of the matrix A 

exists if the inverse of An — A12AJ2A21 exists because it is assumed that A22 has full 

rank a.s. By the given assumption A21A22A12 is a random matrix with a continuous 

distribution. Now write 

An — A12A22A21 = [ai — 61, • • •, ani — 6ni]. (A.l) 

Suppose that 

«i(ai-6i) + hani(ani -bni) = 0 a.s. (A.2) 

for some random variables ai, • • •, ani. Then, we have either 

oc\ai + • • • -f orni ani = oiibi + • • • + Cini bni ^ 0 a.s. (A.3) 

or 

126 
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otiai + • • • + aniani =0 a.s. and ai&i -f • • • + anj6ni =0 a.s. (A.4) 

But Pr[ct\a\ H (- aniani = aib\ H 1- anibni ^ 0] = 0 for any random variables 

c*i)• • -,Q!nn because 6i, • • •,bni have continuous distributions. Thus, (A.4) holds, 

which implies that ati = • • • = ani = 0 a.s. by the given assumption on the rank of 

the matrices An. Therefore, the matrix An — A\iA^Ai\ has full rank a.s. and its 

inverse exists a.s. 

Proof of Theorem 1. 

( ) Because A fl and Oj fli, we obtain the required results by using the 

weak convergence results found in Phillips and Durlauf (1986) and Park and Phillips 

(1988). 

( ) First, we consider the case where xt is not cointegrated. We assume without loss 

of generality that 

x*t\ • • •, a;^ = 1(0), 0 < s < n (A.5) 

(i.e.,k{ = 0, z = 1, • • •, s) and = /(&,•), s < i < n, k, > 1 under the alternative. 

By using the weak law of large numbers and the weak convergence results found in 

Phillips and Durlauf (1986) and Chan and Wei (1988), we have 

T 
= Op(Tki+ki+1) (A.6) 

t-2 

and 
T 

Y, S&S& = Or(Tt>+W), (A.7) 
t=2 

which imply 

T 
D-lT-l'£iASlSl1D-1 = Op(l), (A.8) 

t=2 
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T 

D^T-^St-iS'^D-1 = 0,(1), (A.9) 
t=2 

where D = diag[Tkl, • • •, Tkn]. Also note that 
T 

D~XT~2 ^2, St-iS^D-1 is nonsingular in the limit a.s. (A.10) 
t=2 

due to lemma 3.1.1 in Chan and Wei. Further, when i < s and j < s, we obtain by 

a standard theory for spectral density estimation 

[41%! -»niu, (A.11) 

where fl/n is a nonsingular constant matrix by given assumptions. By contrast, when 

either i > s or j > s, we have as in KPSS (1992) 

^ f Wki{r)Wkj(r)dr, (A.12) 
Jo 

where I = 0(TS), K = J^i k(x)dx, ftj,,Jty(27r) is the cospectrum of Akix[^ and Ak'x[^ 

at the zero frequency, Wm(r) = JQ
r Wm-i(s)ds, Wj(r) = W(r) and Wo(r) = dW(r). 

(A.ll) and (A.12) imply that 

F^D-^iD^F-1 = Op(l), (A.13) 

where F = diag[ 1,•••, 1 • • • , J^5-1)/2]. Using Chan and Wei's lemma 

3.1.1, we also find that is nonsingular in the limit a.s., 

from which, together with (A.ll), we deduce by using Lemma A that 

F^D^tliD^F-1 is nonsingular in the limit a.s. (A. 14) 

Using the same arguments as for (A.13), we readily obtain 

F-1D-xOlD-xF-1 = 0,(1). (A.15) 
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Hence, upon writing 

T 

LM? = tr{F~1(D~1T~1^fAStS't_1D~1 — D^Cl^D'1) 
1=2 

•F~1(F~1D~1iliD~1F~1)~1 

T 
•F-^D^T-^St-iAS'tD'1 - D^ShD-1) 

t=2 

•F-^F^D-^iD^F-1)-1}, (A.16) 
T 

LMfj = tr{F~1(D~1T~1 ̂  AStS'^D-1 — D^Cl^D"1) 
1=2 

T 
•F-1F(2r1r-2 £ Si_iSt

,_1ir1)-1
JF 

1=2 

T 

•F-^D^T-i^St-tASlD-1 
- D-^D'^F-1 

1=2 

•FCF"1!}-1^!)-1^-1)-1}, (A.17) 
T 

SBDHm = triF^iD^T-^StSiD-^F-^F^D^hiD^F'1)-1^ A.18) 
t=i 

and using (A.9), (A.10), (A.13), (A.14) and (A.15), we obtain the desired results. 

Next, we consider the case where the nonstationary element of Xt is cointe-

grated. We construct an n x n nonsingular matrix G [cf. Choi (1991)] such that 

G = I, 0 
0 c 

. The matrix C = is constructed such that the m x (n — 
Cx 
C2 

5) matrix C\ is a cointegrating matrix as in Section 2 and the i — th row (i = 

1, • • •, n — s — m) of the (n - s — m) X (n - s) matrix C2 is [0, • • •, 0, * 1*, 0, • • •, 0]. 

Hence, letting [rc|a+1^, • • •, = zt, we have C\ZT = [1(h), • • • ,/(/m)]' and Czzt = 

[/(fc,+i), • • •, I(kn-m)]'. Because the test statistics are invariant with respect to the 

linear transformation G, we obtain the same results as in the case of non-cointegrated 
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by redefining 

D = diag[Tk\• • •, Tk\ Tl\ • • •, Tlm, Tfc*+S • • •, Tkn~m] (A.19) 

and 

F = diag[L, • • •, T\ /„ • • •, TW*, •••, (A.20) 

with fi = 1 ((,• = 0) + l(lj > 0)T(i~1)/2, (j = 1 ,• • • ,m). 

Lemma B. Suppose that assumptions A1-A9 hold. Under the null hypothesis (2.1), 

T  f 1  

/ rf5(r)5(r)'rfr + fix, (A.21) 
1=2 

T ,1 
{ii)T~2y]StS't=> / J3(r)2?(r)'<fr, (A.22) 

1=2 J0 

T - r1 

(iii)T-2J2StS't=> / B(r)B(r)'dr, (A.23) 
1=2 ^ 

(iv) fix -> fix, (A.24) 

(u) n, -> fi/, (A.25) 

(ui) fi/ —• J)/, (A.26) 

where 

B(r) = nf/aW(r), (A.27) 

£(r) = J3(r) - f }Qr x / \  V P r p + 1 / (p  + 1), (A.28) 

B(r) = B(r) — r*/l V"prp+1/(p + 1)> (A.29) 

• 77,• and -0j minimize the least squares criteria in the L2 norm, respectively, 
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J ||B(r) - 7far0 t)prp\\2dr, (A.30) 

f  \\B(r) — for1/ I  ij)prp+1/(p + l)\\2dr. (A.31) 
Jo 

Proof: 

(i) Write 

T T 

S.-JU = £{x, - (So - So)t° 
t=2 t=2 

•{5,., - (So - (o) £ f («„ - Sp) £ j'}'. (A.32) 
j=1 j=l 

We have as in Phillips and Durlauf (1986) and Park and Phillips (1988) 

t ,i 
T-^xtSU =» / ^(^(ryrfr + fti, (A.33) 

1=2 J° 

t fi 
r-(3/2+n)V^<n(S-t_i ^ (A.34) 

t—2 J° 

T t-1 .x 

^ / rn+l^(r)rfr/(n + j), (A>35) 
1=2 j=l ^ 

Further, iI[(5o — ^o)» • • •, (5P — £p)]' (7? = • • •, T1/2+p]) has the same distri­

bution as [4>o,- • •, V>p]' in the limit. Hence we obtain the desired result. 

(ii) Noting that T~2 Y^t=2 StS't ^ Jo B(r)B(r)'dr, we obtain the result in the same 

way as in part (i). 

(iii) Writing 

= i>,-(50-«o)i>'m 

1=2 1=2 j=l j=l 

•{ft - (Jo -So) ($„ -fp)£/}' (A.36) 
3=1 i=i 
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and noting that i?[(£o — <?o)>"' i(^p~ <5p)]' has the same distribution as [770 >• • •, fjp]', 

we obtain the desired result by using T~2 YM=2 StS't =$• fo B(r)B(r)'dr. 

(iv), (v), (vi) These are trivially obtained by applying the same methods as for Lemma 

A in Choi and Yu (1992) to each element of the matrices. 

Proof of Theorem 2. 

(a) Because = a,- and = 7,(i = 1, • • •, n), we have flj~^2B(r) = W"(r) 

and to^2B(r) = W(r) for any u G X. Therefore, the required results follow from 

Lemma B. 

(b) First, we consider the case where xt is not cointegrated. Because St, St = I(m + 

k + 1) under the alternative, we obtain the results (using St and St) analogous to 

(A.9), (A.13) and (A.15). Farther, because W{r) and W^r) are continuous and 

non-differentiable a.s., we may obtain the results similar to (A.10) and (A.14) by 

employing the same methods as for Chan and Wei (1988)' lemma 3.1.1. Next, we 

trivially obtain the same results for the case of cointegrated xt by redefining the 

transformation matrix G as in the proof of Theorem 1 (6). Hence, the required 

results follow. 

Proof of Theorem 3. 

(i), (ii), (iii) The regression residual St can be written as 

t 
St = SH I{£JS+1-<VH i,+1M 

3=1 

t 
+ -- -  +  ME i' ~ t l P  i«+VJ + .S7> (A.37) 

i=1 

where &,• = O(T') and {5*} denotes the projection of {St} onto the orthogonal 
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complement of the space spanned by {J2)=i i°» X)j=i i1)' * * > £*=i J9}- Noting that 

St = I(m +1), we obtain for any i, j = 1, • • •, n. 

T 

E = 0P{T2*% (A.38) 
t=i 

E = Op(T2p+2), (A.39) 
1=1 

= 0P(T5+2p), (A.40) 

[flip* = Op(T2p), (A.41) 

from which the required results follow. Note the result regarding fij is obtained from 

equation (3.3) in Section 3. 

(iv) The regression residual xt can be written as 

xt = 6q+i{tq+1-t°aq+1 tqai} + 

h 8p{tp — t°ap — ••• — tqap-q} + x*, (A.42) 

where a,- = 0(T l) and {xj} denotes the projection of {xt} onto the orthogonal com­

plement of the space spanned by {t0^1, • • • ,i5}. Also note that x* = I(m). Using 

(A.42), we have 

s, = wE;,+I-£;%+i—£><"> 
j=i j=i j=i 

+••  •  +  -  E  A> Ei'«P-J + E  *;•  < A -« )  
i=l 3=1 3=1 3=1 

Therefore, we obtain for any i,j = 1, • • •, n, 

T 

IE WJ) = 0,(r2'+3), (A.44) 
1=1 
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T 

E *-M!-i)(W) = Op(T2*+2)(m > 1), (A.45) 
t=1 

[ f =  o p ( r 5 + 2 p ) ,  ( A . 4 6 )  

from which the results follow. 
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Appendix B 

Proofs for Chapter III 

For the proofs in this section, we will use the weak convergence results in Phillips and 

Durlauf (1986), Park and Phillips (1988), Phillips (1987) and Kwiatkowski, Phillips, 

Schmidt and Shin (1992) freely without referring to these articles in each instance. 

Proof of Lemma 1. 

This is deduced from Park's (1992) Theorem 4.1. 

Proof of Lemma 2. 

We make the simplifying assumptions XQ = 0 and Co = 0 without loss of generality 

for the asymptotic distribution of B. Letting FT = diag[T^2, T1+1/2, • • •, Tp+1/2] 

and denoting the consistent estimates of fli2 and ft22 using {ut} as fti2 and 022, 

respectively, we obtain 

T T T 
E 1 = ^2(ut ~ &12&22& xtHFr1 -(A- A)(A_1f 2)' ̂  Wtcj-Ff1 

because A — A — 0P(T~X) and Y%=i 1 = 0P( 1). Further, 
T T 

T-1 £ utx't = T-1 ]T{ut - ftafe1 A®, -(A- A)(A-Xf 2)'wt}{xt - (A^f 2)%}' 
t=i t=1 

135 

t=i 
T 

= - iW&AxMFf + O^T-1) 

(B.l) 
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U>;A-T'2 (B.2) _ T-i Y^(ut - £lu&n&xt)xt ~ T'1 ̂ 2 * 
t«i t=1 

+Op(T~l) 

= AT - Bt + Op(T~l), say, (B.3) 

where k = [I — But 

T 

AT = T-1 ^(wt - Cli2Cl22Axt)x't 
t=i 

=>• f dB\.2{r)Bz(r)'dr + I^2 — ^12^22^22' (®*^) 
Jo 

In addition, 

BT -^ [/ — = -^12 ~~ ^12^22 F22- (®*5) 

Therefore, (B.4) and (B.5) yield 

T'1 £ «<*'• =* £ <JBu(r)ft(r)'. (B.6) 

Writing YM=I = [(X)Li ^<ct)'(I^=i and using (B.l) and (B.6), we obtain 

T ,1 
/ dB^Qir)'. (B.7) 

t=i Jo 

Because xt behaves as if it were xt in the limit, it is straightforward to establish 

r -1 
Q{r)Q{r)' dr. (B.8) 

t=1 J° 

Now the required result follows from (B.7) and (B.8). 

Proof of Lemma 3. 
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We assume XQ = 0 and CQ = 0 as in the proof of Lemma 2. Letting GT = diag[ 

r2+i/2,T3+i'V • •,r»+2+"2], s; = S=1 S? = £L u,-, and S? = E!=1 «i, we have 

T T 
Y,s?sfG? = -a l2ii;}x,-(A-A)(A.- lt2)'snsfG}1  

t=1 1=1 

T 
= - fi12n + cyr-1) 

t=l 

=» f151>2(r){ r R(s)'ds}dr, R{s) = [1,5, • • •, sp]'. (B.9) 
yo Jo 

Note that X^*=i S^SfG^1 = Op( 1). Denoting an^ = ]C;=i x») we 

may write 

1 T 1 T 

= 2 %s? = T3 Ew - *< - & - ̂(A-'fij-srxsf - (A-'f^sn' 
1=1 1=1 

= *5 E w - ± E «f f 
t=i i=I L 

+Op(T-1), 

= KT - LT + Op(r-1), say, (B.10) 

where K = [I — Note that YLJ=I = OP(T3) and YLF=I = OP(T2). 

But 

T 

sfk-% 

KT = T-3^(5,"-ni2n22'i,)5f 
1=1 

=>• f Bi.2{r){[ B2{3)'da)dr. (B.ll) 
Jo Jo 

Further, 

ir = Or(T~l), (B.12) 
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because sr 
xt 

St' = Op(T2). Therefore, it follows from (B.ll) and (B.12) that 

T-3 V S?S? =J> /1 ft.a(r)( f B2(s)'ds)dr. (B.13) 
Jo Jo 

Writing £f=iSt
uSt®' = [(Ef=i S?Sf)']' and using (B.9) and (B.13), we 

obtain 
T r1 

Y]S?S<H?=> / £Mr)S(r)'dr, (B.14) 
t=i -70 

where J?r = diag[T2+1/2, T3+1/2, • • •, Tp+2+1/2, T3, • • •, T3]. In addition, it is straight­

forward to establish 

T f1 

(B.15) 
t=i 

Therefore, the required result follows from (B.14) and (B.15). 

Proof of Theorem 1. 

(a) Write y* — A*x% = ut — Ax* — (A — A)(A-1f2)'t&t — (A* — A)x£. We assume 

x0 = 0 without loss of generality for the asymptotic distributions we axe to derive. 

Denoting Sf* = Ef=i xh = Ei=i an(l B2(r) = JQ
r B2(s)ds, we obtain by using 

Lemma 1 

- (a - J)(A-'f,)'% 
t=2 t=2 

A A 

-(A* - - OaOSAxt - (A* - A)x*}' 
T 

= T"1 ^{5t
u_x - AiateV.i - (^ - A)SSLJ 

t=2 
A A 

•{ut — f2x2^22^^^ — (A* — A^XtY + Op(T *) 

/V.2(r) " f dB^{s)B2{s)'{ f1 B2(5)B2(S)'dS}-1B2(r)] 
Jo Jo Jo 
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-[dB^ir)- f1 dB1.2(s)B2(s)'{ P B2{s)B2{3)'ds}'1 B2{r)dr^ 
Jo Jo 

+/cS«' 

/WiM- f iWi{s)Wi(sy{ [' w^w^syds}-1 

Jo Jo Jo 

W^r^dWxir) - f <ZWi(5)W2(s)'{ / W^W^'ds}-1 

Jo Jo 

W2(r)dr]'n\{2
2 + KUK! (B.16) 

and 

T 
r-*Y,s;s;' = T-2J2iŝ - l̂>^-(A-A){A-%ysr-(A'-A)sn 

1=1 t=1 

•{S? - n12h£x, - (A - 4)(A"lf2)'5r - (A* - A)sn' 
T 

= T-2^{ft-n12f!2-!
1x<-(A,-^)5n 

t=l 

•{5, - a12a^Xt - (A- - A)S?}' + Ot(T-v) 

=*• [ WaM - f <iB,.2(s)B2(i)'{ f1 B2(3)B2(s)'i»}-1B2(r)] 
Jo Jo Jo 

•[Si.2(r)- f iBUs)Ms)'{f B2(s)B2(3)'<fa}-1B2(r)]'ir 
Jo Jo 

= / [Wi(r) - f <Wi(s)W2(S)'{ f W2(s)W2(s)'ds}-1 

Jo Jo Jo 

W"2(r)][Wi(r) - / eZWi(s)W2(s)'{ f W^Wiisyds}-1 

Jo Jo 

W2(r))'drn\{2
2. (B.17) 

Note that we obtain the equivalence (in distribution) relations from &\\{2B\,2{r) = 

Wi(r) and £l22^2B2(r) = W2(r). Because A ftii,2j the required results follow 

from (B.16) and (B.17). 

(6) Writeyt—Bqt = ut—J2 Axt — (A—A)(A_1f2)'wt — (B—B)qt, and S% — BS% = 
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St — ^12^22(^t — xo) — (A — A)(A-1f 2)/<§t" — (2? — B)Sf. Without loss of generality, 

we assume xQ = 0. We obtain by using Lemma 2 

T T 

1=2 1=2 

—(5 — — ft 121^22 Axt 

-(I - A)(A-lfJtS, - (5 -
T 

= T-1 Y, W-i - ftuffeV-i -{B -
1=2 

•{«t — A®t — (B — B)qt}' + Op(T~x) 

* /W(r) - /1 J3i.2(s)S(a)'<fe{ f1 S(s)S(s)'ds}-1S(r)] 
Jo Jo Jo 

•[«*Bi.a(r) - f BtMSW'dai f S^S^'ds}-^)^ 
Jo Jo 

+AcS«' 

= «!fi/Vi(r)- f1 W1(s)Sw ( 3 )'ds{ f1 SMS^syds}-1 

Jo Jo Jo 

•Mr)][<Wi(r) - / f SvWSvWda}-1 

Jo Jo 

Qw(r)'dr] Q,\{2
2 + kS/c', (B.18) 

because ZS(s) = Sw(s) where Z = n°_i J. In the same way, we obtain 

T T 
T-2Y^&S't = T~2 - fijigxt - (A - A)(Arlt2ySr - (B - B)Sft 

t=i 1=1 

•{,St
u - £l12Cl£xt -(A- AXk-^ys? — (B — B)Sft' 

T 
= T-*Y,{St-hvhHxt-(B-B)Sn 

1=1 

'{St - fliaflra1®* - (B - B)St}' + OpiT'1) 

/ W ( r ) -  f 1  B 1 . 2 ( 3 ) S ( 3 y d s {  f 1  S { s ) S { s y d s } - 1 S ( r ) ]  
Jo Jo Jo 
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•[£i.a(r) - f1 B1.2(s)S(syds{ C S{s)S{8)'ds}-1S{r)']dr 
Jo Jo 

= / [Wi(r) - f W1{s)Sw(s)'d3{ / S.toS.to'lfo}-1 

Jo Jo Jo 

- f W1(s)Sv,(s)'ds{ f S.W^W1 

Jo Jo 

(B.19) 

and 

T T 

r-2^s,s; = T-a52{sj,-n1Jiyir,-(i-ii)(A-If2)'af-(B-j5)S'} 
t=l f=l 

•{S? - - (I - A)(A~1f2)/5t
u' - (B - B)S9

ty 
T 

= r-a (s-5)5?> 
t=i 

•{5, - Ctl2a^'x, ~ ( B — B )s< Y +O ^T -1) 

* [ [B1.2W- [ iBL3(s)Q(s)'{L 
Jo Jo Jo 

•[&j(r) - f DBIA(s)Q(s)\ / <?(a)(?(s)'<fa)-1S(r)]'<ir 
Jo Jo 

S "5S / [WiW - / iff^(*)Q.(j)'<b{ f Q„(.3)QW{s)'ds}-1 

Jo Jo Jo 

^(r)][Wi(r) - [ dW1(s)Qv>(s)'ds{ f Q^QM'ds}'1 

Jo Jo 

S(r))'drSl\{2
2. (B.20) 

Because (ln.2 flu.2 and Ctn.2 flu.2, we obtain the required results from (B.18), 

(B.19) and (B.20). 

Proof of Theorem 2. 

(a) Consider the system of equation (3.1). Under the alternative, there is at least one 

equation that is spurious in nature. Without loss of generality, arrange the first n\ 
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equations to be spurious and the remaining n2 — n — n\ equations to be cointegrated. 

Then, we have for the OLS estimate of A 

NT(A-A) = Or(l), (B.21) 

NT = diag[ 1, • • •, 1, T, • • •, T]. Further, write 

i=I t=I t=i 1=1 

+(A"1f2)' ̂ ^{(A"1^). 
t=i 

But MTAMT1 = 0P(1), where MT = diag[T1/2, • • •, T1/2, !,•••,!], 

(B.22) 

r2 = 
m 

\ 0P(TS) 1 
0P( 1) 

nx 

n2 + m 

E ^ =  
t=i 

n + m 
OAT2) 1 
0P(T) 

"i 
n2 + m 

(B.23) 

(B.24) 

T~XM^X ^2 wtw'tMj1 = 0P(1). (B.25) 
1=1 

A ^ 

Note that we may show that the matrix AfyAMy is nonsingular in the limit a.s. 

by using the same methods as for Chan and Wei's (1988) Lemma 3.1.1 and Lemma 

A in Appendix A. Therefore, it follows that 
T T 

T~2J2x'x't = + ""M- (B-26) 
1=1 1=1 

In addition, writing 
2* T 2* y J* 

E •u'xj' = ^2 UtXt - ̂2 Ut^A-1f 2 - ̂ 2^(22 &xtx't - 22 A-1f 2) 
1=1 t=l 1=1 1=1 t=l 

-(A - A)(A xf 2)'(E E u>tu>jA-1f2) (B.27) 
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22 utw't = 
1=1 

n\ n% + m 
0P(T>) 0P(T) 

[ 0P(T) 0P(T) j 
n i 
U2 

Jll2 = 
m 

Op{Ts) 
[ 0P(1) J 

ni , 
Jl2 

(B.28) 

(B.29) 

and 

we obtain 

(hi = 0„( 1), = 0P(T), j] = 0r(T), 
1=1 1=1 

A —A 
m 

0,(1) 
Op(T~i) 

Tlx 

n2 

m 
OAT2) 
Op(T) 

22u*x* = 
1=1 

Prom (B.26) and (B.32), it follows that 

NT(A* - A) = 0,(1). 

Next, write 

ni • 
n2 

(B.30) 

(B.31) 

(B.32) 

(B.33) 

S.T = St
u - ftiaAi1®, - (A - A)(A-Xfa)#5r - (A* - A)(S? - f^A"1^) (B.34) 

and let PT = diag[T, • • •, T, 1, • • •, 1]. Then, using (B.21), (B.33) and the same meth­

ods as for (B.26) and (B.32) gives 

T T T 
T~2Pf122 StSt'Pf1 = T~2P^X 22s?s?'ptX + t~2PT122 StSf(A* ~ A/Pf1 

i=i i=i i=i 

+T~2Pt:l(A*-A)22 S?Sf{A* - A)'Pf1 + <v,.(l) 
t=i 

= Op( 1). (B.35) 
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In the same way, 
T 

T~lpT1X) A5?5?-ipf1 = OpC1)- (B.36) 
t=2 

Further, 

Q ^ P f : : l Q ? 1  =  0 P ( 1 ) ,  ( B . 3 7 )  

and 

Q^P^kHtfP^Qj1 = 0P( 1), (B.38) 

where QT = diaglT^-1^2, • • •, 1, • • •, 1]. We may show the a.s. nonsingu-

larity of T~2 Py1 SfSf'Pf1 in the limit by using the same methods as for 

Chan and Wei's (1988) Lemma 3.1.1. Additionally, the a.s. nonsingularity of Q?1 

Pf1 ^11.2 Pf1 Qt1 *n limit is obtained by using the same methods as for the a.s. 
A ^ 

nonsingularity of Mt A My. Hence, rewriting the test statistics as 

T 
LMT = MQ^CT-^PF1 ASJS^PF1 - PF ̂ E'/C'PF ̂ QY1 

1=2 

' { Q^ Pt^ II^ QTY1 

T 
-Qt^T^PT1 X^A^'Pf1 - Py^E/c'Py1)^1 

1=2 

(B.39) 

LM„ = irtQr'fT-'Pf1 ^ASfS^Pf' - P?1 kVk'P?1) 
t=2 

1=2 

T 

•(T-1Py1E 5;_x A5;'Pf1 - Pf^E/c'Pf1) 
1=2 

Q^iQ^P^^ii^P^QT1) 1}» (B.40) 
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T 

SBDH = tr {Q^iT-^P^S'tSfP^Q^iQ^P^n^QT1)'1) (B.41) 
i=i 

and using (B.35)-(B.38), we obtain the desired results. 

(b) Because the moment based on a raw series and that on the detrended series share 

the same probabilistic order of magnitude, the test statistics using St and $t diverge 

at the same rates as those using S*. Hence, the required results follow. 
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Appendix C 

Proofs for Chapter IV 

Proof of Theorem 1. 

The true DGP is given by 

Vt — AiCtii + AiCth + Xt, 

= AiCt + (A2 — A\)ctt2 + Xt, (C.l) 

whereas a researcher runs the following regression equation to estimate the residuals: 

yt = AiCt + xt. (C.2) 

The residual from (C.2) is given by 

xt = xt-22xtc'tC22<Hc't)~XCt-\r{A2- Ai)ct*2 

~(A2 - Ax) 22 l2(Hc!t(22 (C.3) 

and 

s, = s, - +(A2 -

~(A2 - Ai) ̂  l2c,4(5: ccj)-1 S? 

= Eit — E2t + E$t — E^f, (C.4) 
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where S™ = ^Li w*- Note that 8^x cpy] —> c(r), T~x S?1 —• /0
r c(s)ds, and T~x 

6il S^, -> Also, T-1" Bltrr| => B(r), T~W =*• /^Bc- (/„' ccT1 

c(r), and 21-1/2 2?3pv] = Op(Tp+1/2) = T-1/2.E4pY]. Since St is dominated by £3 and 

E\ of Op(Tp+1/2), letting Et = £?3t + we have 

T T 

T~2Y^StS't = r~2]T£t£t' + Op(Tp+1/2) 
t=i 1=1 

= Op(T2p+x) + Op(Tp+x'2). (C.5) 

Further, by KPSS (1992) and Appendix A, the longrun covariance matrix estimate 

is given by 

/ 

ft, = 220(h)k(h/l) 
h=-l 

= Op{T2p+s). (C.6) 

Prom (C.5) and (C.6) the result (iv) follows. As for (i) to (iii) could be shown easily 

by applying the same method used to prove (i). For further details, see Appendix A. 

Proof of Theorem 2. 

Part (a): The true DGP is represented by 

yt = Adt + xt for the bar case, (C.7) 

and 

S% = Aht + St for the tilde case. (C.8) 

Define weight matrix 

ST = diag[T°, T, - • •, Tk~x, Tk, Tk, • • •, Te, Te, Te+1, • • •, Tp). (C.9) 
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Then, ^dpY] —* d and T~l6^lht —* h = J* d(s)ds. The limiting distributions for 

the OLS estimators from equations (C.7) and (C.8) are given by 

T1I\A-A)6T F1 dBd'( F1 dd')-1 

Jo Jo 

= F, (C.IO) 

T^2(A-A)6T => F Bh'( F hh')-1 

Jo Jo 

= F. (C.ll) 

Now consider the moment matrix of OLS residuals St = ]C»=i and St. 

T T 
= T-'Yi{St-(A-A)h,)(St-(A-A.)htY 

t=1 t=l 

=» [\B - Fh)(B - Fh)', (C.12) 
Jo 

T 
T-2Y,S'S't = T-2'£i(St-{A-A)h,)(St-t,A-A)ht)' 

t=1 

f (B - Fh)(B - Fh)', (C.13) 
Jo 

T T 

t=l t=l 

and 

T"1 = r-1£(AS,-(A-.4H)(Vi-(A-/L)/>1-1)' 
t=2 t=2 

=• f d(B - Fh)(B — Fh)' + &[. (C.14) 
Jo 

Next, the covariance matrices are consistent (see Appendix A for proof) 

and, fii A Sli and fix, respectively. (C.15) 

Hence, (i) - (vi) of Theorem 2 follows immediately from (C.IO) -(C.15). 
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Part (6): The proof is a simple application of the proof in Choi and Ahn (1993a). 

Proof of Theorem 3 and Proof of Lemma 4. 

These results are trivially obtained by applying the methods used in the proof of 

Theorem 1. 

Proof of Lemma 5. 

To prove Lemma 5, it is enough to show that we can transform the models to the 

form of M( 1) and M(2) when there are multiple structural breaks. It is trivial to 

transform the model to M( 1) without the continuity restriction. Under the continuity 

restriction, we have the following q restrictions; 

4 = 4 + (4+i ~ <4+i)?i + • • • + (4 ~ 4)Ttk (C.16) 

4 - 4  +  ( 4 + i  -  4 +1)^2 + —f- (4 - 4)T£~k (c.17) 

i (C.18) 

4 = 4+1 + (4X\ - 4+M + • • • + (4+1 - (c.i9) 

Note that these q restrictions reduces the number of parameters to be estimated by 

q for each equation and a\ is expressed as follow: 

4 = 4+1 + E D°i+l - <)Ti'K (C.2°) 
h=k+l j=i 

Substituting a[ with the right hand side of (C.20) for i — 1,•••,<?, into equation 

(4.44) and using the indicator functions rji = £i=i tj, results in the desired equation. 

Proof of Theorem 6. 
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The desired results follow inunediately by applying continuous mapping theorem to 

Theorem 3. 
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